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Abstract. An a-priori hyper-reduction method for nonlinear structural dynamics finite
element problems is proposed in this work. A-priori calculated static configurations and
eigenmodes are used rather than time-domain training simulation data to create a reduced
order basis and perform the hyper-reduction element selection. The hyper-reduction el-
ement selection is performed by solving an L1 optimization problem subject to a set of
equality constraints. The proposed method is applied to the case of a highly nonlinear
high-fidelity tire finite element model rolling with a constant angular velocity over a rough
road surface. It is shown that care has to be taken during the hyper-reduction process
when considering distributed contact constraints, as is the case for e.g. a tire rolling over
a rough road surface. Large speedup factors can be obtained while still retaining a rela-
tively high accuracy, making the proposed method suitable for application to e.g. design
optimization.

1 INTRODUCTION

When optimizing the design of a passenger car tire, typically over 50 different per-
formance criteria have to be taken into account. These are related to (but not limited
to) e.g. energy efficiency, handling, wear and noise. Due to the complex structure of a
typical passenger car tire, most of the criteria are coupled: trying to enhance one per-
formance will often decrease other performances. In order to cope with the increasing
need to optimize multiple tire performance criteria simultaneously, predictive numerical
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simulation techniques could be used, rather than time-consuming experiments. A numer-
ical approach using high-fidelity nonlinear structural dynamics finite element (FE) tire
models offers the possibility to perform various virtual studies and virtual assessment of
different tire designs. Because of the too high numerical cost, currently no industrially
applicable high-fidelity fully-predictive numerical approach is available to model a tire
rolling over a rough road surface. Such a numerical approach is necessary to predict and
assess e.g. the airborne exterior noise and structure-borne interior noise performance of
a tire design, amongst others. In order to alleviate the computational cost associated
with the use of the high-fidelity FE models, the principle of projection-based nonlinear
model order reduction (MOR) [3] can be applied. The original full order model (FOM)
is transformed into a smaller, lower dimensional reduced order model (ROM) by means
of projecting the full order solution space onto a lower dimensional subspace. As demon-
strated in e.g. [4] and [7], significant speedups can be achieved using nonlinear MOR,
therefore re-enabling the use of highly complex high-fidelity FE models. The choice of
the subspace basis determines how good the FOM solution is approximated by the ROM
solution. Several approaches have been suggested for nonlinear structural dynamics ap-
plications: (i) Proper Orthogonal Decomposition (POD) applied to a series of dynamic
training snapshots [3], [7], [8]. (ii) Modal Derivatives (MD) in combination with e.g.
eigenmodes [10], [14], [16]. (iii) Linear or nonlinear static configurations in combination
with e.g. eigenmodes [4], [5], [9], [12], [15]. While the POD approach can offer a very
efficient low-dimensional subspace basis, relevant simulation training data is required.
Computation of the training data can be too expensive, especially in high-fidelity predic-
tive approaches as used for tire design optimization. The MD approach has been shown to
be usable for structural dynamics problems with mild nonlinear behavior of the internal
force term [14], [16]. Therefore, the static configuration approach is adopted in this work
to create the subspace basis. Recently, so-called hyper-reduction methods [7], [12] for
nonlinear structural FE problems have been proposed. These hyper-reduction methods
are a class of projection-based nonlinear MOR methods designed specifically for the re-
duction of nonlinear structural FE models. The projection of the FOM onto a subspace
is complemented by a second-tier approximation, which is a necessary step to effectively
reduce the computational complexity of the ROM [7]. The Energy Conserving Sampling
and Weighting (ECSW) method proposed by Farhat et al. [7] has been shown to preserve
the structure, symmetry and stability properties of the FOM [8]. The ECSW method [7]
requires expensive time-domain training simulations, which have to be performed sequen-
tially as each consecutive timestep depends on the previous one. For large FOMs, as used
in tire design optimization problems, this time-domain training approach is too expensive
to use, as per design change the time-domain training has to be repeated. Therefore,
there is a clear need for a-priori methods which do not need time-domain training data.
A hyper-reduction method is proposed in this work that uses a-priori static training sim-
ulations, similar to the Multi-Expansion Point Modal (MEM) method [12] and the static
ECSW training method proposed by Rutzmoser et al. [13]. These a-priori static training
simulations can be performed in parallel, therefore making the hyper-reduction method
suitable even for the predictive simulations in tire design optimization. The proposed
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hyper-reduction method is applied to a nonlinear high-fidelity FE tire model rolling with
a constant angular velocity over a rough road surface. The predicted vertical contact
forces and general tire response due to the rolling are of interest for the prediction of the
airborne exterior noise and structure-borne interior noise performance of the considered
tire design. Throughout this work, the rolling of the tire over the rough road surface with
a constant angular velocity is referred to as the tire/road problem.

2 PROBLEM STATEMENT

The full order model (FOM) of the tire/road problem is described by the semi-discrete
nonlinear equations of motion as:

Mẍ + GALE (x) ẋ + f (x, ẋ)− fALE (x) = fp (x, pa) + fc (x,xr) + fe (1)

Here M ∈ Rn×n is the configuration-independent mass matrix, GALE (x) ∈ Rn×n is
the ALE skew-symmetric Gyroscopic matrix and fALE (x) ∈ Rn the ALE rotational in-
ertia force vector [11] which describe the constant rolling, f (x, ẋ) ∈ Rn the internal
force vector which includes nonlinear strain-displacement behavior and nonlinear nearly-
incompressible (visco-)hyperelastic constitutive behavior, fp (x, pa) ∈ Rn the air-pressure
force vector and pa the applied inflation air pressure, fc (x,xr) ∈ Rn the tire/road contact
force vector which is described using a penalty method formulation, xr the current road
surface contact constraints and fe ∈ Rn the configuration-independent external force vec-
tor. The current configuration is defined as x = x0 + u ∈ Rn, where x0 is the reference
configuration and u the total displacement at time t with respect to the reference config-
uration. The time dependency is omitted from notation for clarity. The first and second
derivatives of the current configuration with respect to time are denoted as ẋ and ẍ respec-
tively. In order to describe the nearly-incompressible behavior of the (visco-)hyperelastic
constitutive models, a mixed displacement-pressure (u/p) formulation is used [2]. A vari-
ant of the implicit generalized-α discrete time integration method, proposed by Arnold
and Brüls [1], is chosen to time-discretize the equations of motion (1). This variant of the
generalized-α method has second-order accuracy for the acceleration field variables. The-
ory and implementation details can be found in [1]. An implicit rather than an explicit
time integration scheme is chosen, as this allows to use larger timesteps. This results in
less timesteps to be evaluated and in general lower overall computational costs. As an
implicit scheme is used, the nonlinear equations of motion (1) are consistently linearized
in the spatial domain around the current configuration x. This yields the following set of
equations:

Mẍ + GALEẋ + (K−Kp −Kc −KALE) ∆u = fp + fc + fe − (f − fALE) (2)

Here K ∈ Rn×n is the internal force tangent stiffness matrix, Kp ∈ Rn×n is the pressure
load force tangent stiffness matrix, Kc ∈ Rn×n is the contact force tangent stiffness matrix
and KALE ∈ Rn×n is the ALE inertia matrix [11]. Solving the set of linearized equations
of motions (2) per iteration step quickly becomes very costly as the amount of degrees of
freedom rises. For industrial-sized design problems, e.g. the tire/road problem discussed
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in this work, the total computational cost becomes too large and the simulations are no
longer feasible to use in a design context. Therefore, hyper-reduction is applied to the
FOM (2) to create the hyper-reduced order model (HROM).

3 REDUCED ORDER MODEL DEFINITION

The full-order solution x ∈ Rn, residing in the solution manifold defined by (1), is
approximated by the reduced-order solution q ∈ Rm, which resides in a constant subspace
of the solution manifold. The subspace is spanned by the columns of V ∈ Rn×m, hereafter
called the reduced order basis (ROB). This leads to the following approximation:

x ≈ x̃ = x0 + Vq (3)

And since V is chosen to be constant, it follows that:

ẋ ≈ ˙̃x = Vq̇ (4)

ẍ ≈ ¨̃x = Vq̈ (5)

When inserting the approximations (3)–(5) in the linearized equations of motion (2), this
introduces an error which can be eliminated by the Galerkin projection of the linearized
equations of motion (2) onto the ROB V, resulting in the ROM:

M̃q̈ + G̃q̇ + K̃∆q = f̃ (6)

Where

M̃ = VTMV ∈ Rm×m

G̃ = VTGALEV ∈ Rm×m

K̃ = VT (K−Kp −Kc −KALE) V ∈ Rm×m

f̃ = VT (fp + fc + fe − f) ∈ Rm

Both the reduced mass matrix M̃ and reduced external force VT fe can be calculated
a-priori, as they are configuration independent and remain constant. The other reduced
terms are configuration-dependent and therefore have to be evaluated again per iteration
step. A second-tier hyper-reduction approximation of these terms is used to reduce the
computational cost associated with their evaluation.

3.1 REDUCED-ORDER BASIS DEFINITION

Highly nonlinear behavior occurs in the tire/road problem due to the constitutive
behavior of the rubber compounds and reinforcements, as well as the contact forces.
Therefore the ROB as used in this work is generated using nonlinear steady-state (which
are in fact static due to the ALE formulation [11]) contact configurations χ ∈ Rn×nχ and
eigenmodes Ψ ∈ Rn×nΨ , where nχ + nΨ = m:

V =
[
χ1 − x0 · · · χnχ − x0 | Ψ1 · · · ΨnΨ

]
∈ Rn×m (7)
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This ROB can be calculated a-priori and in parallel. A set of road surface constraints[
xr

1 · · · xr
nχ
]

is sampled from the set of a-priori known road surface constraints. The
corresponding steady-state (static) contact configurations χk, k = 1 · · ·nχ are calculated
as follows:

f
(
χk
)
− fALE

(
χk
)

= fp
(
χk, pa

)
+ fc

(
χk,xr

k
)

+ fe (8)

These contact configurations can be considered as nonlinear constraint modes, where a
distributed set of constraints (the geometrical contact constraints) is applied rather than
local unit displacements (as is the case for linear constraint modes [6]). Following the
MEM method [12], sets of eigenmodes are calculated around nonlinear constraint modes
χl ∈ χ, l = 1 · · ·nl ≤ nχ:

Ψχl = eig
(

¯̄K
(
χl
)
,M
)
∈ Rn×nΨ (9)

Here ¯̄K = K−Kp −Kc −KALE. The sets of eigenmodes are then concatenated:

Ψχ =
[
Ψχ1 · · ·Ψχnl

]
(10)

And a singular value decomposition is performed on the concatenated eigenspace, where
the nΨ most dominant contributions are kept:

UΣWT = svd (Ψχ) (11)

Ψ = {Ui|i = 1 · · ·nΨ} (12)

4 HYPER-REDUCED ORDER MODEL DEFINITION

Following the finite element assembly procedure, the reduced, configuration dependent
terms in (6) can be written as:

f̃ (x) = VT f (x) =

|E|∑
i=1

VT
i f i (x) (13)

Here E is the total set of elements and VT
i and f i have a sparse structure, only containing

the contributions of element i. These reduced terms can be approximated further by using
the Energy-Conserving Sampling and Weighting (ECSW) hyper-reduction approach as
proposed by Farhat et al. [7]:

f̃ (x) ≈ f̄ (x) =

|Es|∑
i=1

siV
T
i f i (x) and si > 0 (14)

Here the reduced set of finite elements Es ⊂ E and their respective weights si are calcu-
lated (sampled from the full set E) using dynamic time-domain training data. Given a
set of training samples xi, i = 1 · · ·ns, the reduced set of elements Es and their respective
weights s are calculated in order to match the hyper-reduced and reduced internal forces.
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The problem is written as a non-negative least squares (NNLS) optimization problem,
and solved using a sparse NNLS solver as proposed by Farhat et al. [7]. As discussed by
Farhat et al. [8] structure, stability and symmetry properties are preserved. Therefore,
the ECSW Hyper-Reduction approach (14) is adopted in this work as well. The cost
associated with the dynamic time-domain training simulations and solving the NNLS
problem makes the ECSW element sampling method unfeasible for an a-priori approach.
Recently, an alternative a-priori training approach was suggested by Rutzmoser et al. [13]
that can be combined with the sparse NNLS solver [7]. Since in this work a set of nonlin-
ear constraint modes is used to create the ROB, an alternative element sampling method
is used that does not rely on the NNLS approach. More specifically, a variant of the
Multi-Expansion point Modal Reduction method (MEM) proposed by Naets et al. [12] is
used. The MEM method element sampling is performed by solving an L1 optimization
problem [12]. The hyper-reduced and reduced internal force and tangent stiffness matrix
corresponding to one configuration are matched by means of equality constraints. Solv-
ing the L1 optimization problems yields a set of elements Es with a cardinality equal to
m2+m

2
. The main benefit of this approach is that only one static training configuration

needs to be considered, and an L1 optimization problem solver of choice can be used.
However, in case m2+m

2
≥ |E|, Es = E and no hyper-reduction is achieved. Due to dis-

tributed nature of the tire/road contact problem, a relatively large ROB is required and
the MEM approach cannot be used. A variation of the MEM sampling approach, called
the Multi-Configuration MEM (MCMEM) approach, is therefore suggested to cope with
this issue. Instead of matching the hyper-reduced and reduced force and tangent stiffness
corresponding to one configuration, the hyper-reduced and reduced forces (no tangent
stiffness) corresponding to multiple configurations k are matched:

min
s∈R|E|

|s|1

subject to f̄ (x1) = f̃ (x1)

...

f̄ (xk) = f̃ (xk)

s ≥ 0.

(15)

These constraints can be rewritten as: VT
1 f1 (x1)
· · ·

VT
|E|f |E| (x1)

T · · ·

 VT
1 f1 (xk)
· · ·

VT
|E|f |E| (xk)

T
 s =

f̃ (x1)
...

f̃ (xk)

 (16)

Af
ks =

f̃ (x1)
...

f̃ (xk)

 (17)

Solving this variation of the original MEM optimization problem yields a set Es with
a cardinality equal to k ×m. Therefore, as long as k ×m � |E| and m2+m

2
≥ |E|, the
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MCMEM approach can be used. Applying the MCMEM hyper-reduction to the linearized
equations of motion (2) yields:

M̃q̈ + Ḡq̇ + K̄∆q = f̄ (18)

Here the reduced and hyper-reduced terms are:

Ḡ =

|Es|∑
i=1

siV
T
i Gi,ALEVi

K̄ =

|Es|∑
i=1

siV
T
i (Ki −Ki,ALE) Vi −

|Esp|∑
i=1

si,pVT
i Ki,pVi −VTKcV

f̄ =

|Esp|∑
i=1

si,pVT
i f i,p + VT fc + VT fe −

|Es|∑
i=1

siV
T
i (f i − f i,ALE)

While all of the elements E are used to perform the MCMEM sampling of the internal
and ALE force terms and to assemble the hyper-reduced form

∑|Es|
i=1 siV

T
i (f i − f i,ALE), a

subset of elements, Ep ⊂ E is used to perform the MCMEM sampling of the pressure force

term and assemble to hyper-reduced form
∑|Esp|

i=1 si,pVT
i f i,p. This subset Ep corresponds

to the elements to which the internal air pressure is applied.

4.1 REDUCED CONTACT FORCE CONSIDERATIONS

For the specific case of the tire/road problem, the subset of contact elements is small
and no active contact search has to be performed. No benefit is achieved hyper-reducing
the contact force term fc, thus this term is re-projected per iteration step. Additional care
has to be taken when evaluating the reduced contact force term. Due to the projection of
the FOM on the ROB, the resulting ROM can lock when applying the contact constraints.
This is a direct consequence of the reduction of the problem and the choice of the ROB,
which is aggravated in the case of the tire/road problem due to: (i) The nature of the
distributed contact problem, where many constraints are active at the same time. The
tire configuration needs to comply with the road surface to meet the contact constraints
locally, requiring local flexibility which is typically lost after the projection step. (ii) The
hyper-elastic, nearly incompressible constitutive behavior in combination with a mixed
u/p formulation is susceptible to locking [2], even without projection of the FOM on a
ROB. The possible ROM solutions are constrained to lie in the reduction space, and it
could be that enforcing the contact constraints results in configurations that do not lie in
this space. Therefore, it is suggested to weaken the enforcement of the contact constraints
by using a smaller penalty factor ε when evaluating the reduced contact force term. A
smaller penalty factor allows a larger violation of the contact constraints, and can be seen
as introducing local ”flexibility” to prevent the locking of the ROM model by using a soft
rather than hard enforcement of the constraints.
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5 NUMERICAL VALIDATION AND RESULTS

The proposed MCMEM method is implemented in a nonlinear finite element Matlab
framework. A nonlinear high-fidelity FE tire model consisting of 75400 elements and
326771 degrees of freedom is used as the FOM. Nonlinear visco-hyperelastic and hyper-
elastic constitutive models are used to model the rubber compounds and reinforcement
materials. The tire is mounted on a rigid rim and inflated to a specific air pressure pa.
The numerical test-setup consists of the tire being loaded force-controlled on a rotating
drum, on which the rough road surface is mounted. The external loading force is held
constant. Compliance of the test-rig assembly (to which the tire is mounted) is included
as a linear spring connected to the rigid rim center. The FOM and a set of road surface
contact constraints is shown in Figure 1:

Figure 1: FOM and set of a road surface contact constraints

The drum rotates at an angular velocity corresponding to a surface velocity of 13.89m
s

and drives the rotation of the tire. The tire can thus be considered to be in a free-
rolling regime. The applied road surface contact constraints correspond to a maximum
excitation frequency of 500 Hz. The corresponding minimal sampling frequency is 1 kHz,
leading to a minimal timestep ∆t = 0.001s. As discussed before, the hyper-reduced
discretized equations of motion (18) are solved using a generalized-α integrator [1]. A
smaller timestep is used to ensure stability, as the unconditional stability property does
not hold for nonlinear problems [1]. A total of 0.1 seconds of constant rolling is simulated,
using a discrete timestep ∆t = 0.0001s. The relative error on displacements is defined as

εx =
|x− x̃|2
|x|2
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and the relative error on the total vertical contact force is defined as

εfc =
|fc,z − f̃c,z|1
|fc,z|1

where the L1 norm is used rather than the L2 norm, as the total vertical contact force is
of interest.

5.1 INFLUENCE OF NUMBER OF MCMEM SAMPLES

The influence of the amount of MCMEM samples k used for calculating Es on εx and
εfc is shown in Figure 2. The same ROB is used for the different amount of samples. The
mean displacement error, calculated over the simulated 0.1 seconds, stabilizes when two or
more samples are used. Although not shown here, the amount of samples to calculate Ep

already stabilizes from one sample on, which could be attributed to the relatively constant
nature of the pressure force term. The RMS error on total vertical contact force improves
when using more samples, but not as drastically as the mean error on displacements.

(a) (b)

Figure 2: RMS relative error on total vertical contact force (a) and mean global relative
error on displacements (b) for different amounts of MCMEM samples

5.2 INFLUENCE OF ENFORCING THE CONTACT CONSTRAINTS

Due to the distributed nature of the contact problem, locking of the HROM can occur
when trying to enforce the original contact constraints, as discussed in section 4.1. The
locking behavior can clearly be observed in the HROM contact forces. The effects of
using a hard enforcement of the contact constraints versus a soft enforcement is shown
in Figure 3 (a). An optimal value of the scaling of the penalty factor ε (as used for the
soft constraint enforcement) can be calculated by means of comparing results for the case
of e.g. a static loading, which is shown in Figure 3 (b). The same amount of MCMEM
samples and same ROB are used for the comparison.
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(a) (b)

Figure 3: Relative error on total vertical contact force (a) and RMS relative error on total
vertical force (b) for different scalings of the penalty factor ε

5.3 GLOBAL PERFORMANCE

The global performance of the MCMEM method is compared for different HROMs.
These HROMS differ in the amount of nonlinear constraint modes and eigenmodes used
for ROB construction. The same amount of MCMEM samples is used to calculate Es

and Es
p for all HROMs. The same penalty scaling factor is used for all HROMs as well.

An overview is given in Table 1. The ratio of the number of nonlinear constraint modes
versus number of eigenmodes is kept constant for all HROMS. The online speedup factor
is denoted as OSF (the time-domain simulation speedup), while the total speedup factor
is denoted as TSF. It should be noted that TSF includes a fixed ROB calculation cost,
which means that the TSF will tend to the OSF for longer simulated times. In general,
applying the MCMEM method to the tire/road problem allows for good speedups while
still retaining a relatively high accuracy, as demonstrated by the results shown in Table 1.

Table 1: Global performance of the MCMEM method for different HROMs

# DOFs |E| |Ep| εx,mean εfc,RMS
OSF TSF

FOM 326771 75400 6552 - - - -
HROM1 175 350 175 0.001947 0.05719 336.56 13.81
HROM2 350 700 350 0.001599 0.04929 159.72 13.21
HROM3 525 1050 525 0.001519 0.04947 93.54 12.48
HROM4 700 1400 700 0.001428 0.04486 59.36 11.59
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6 CONCLUSION

An a priori nonlinear hyper-reduction method for nonlinear structural dynamics FE
problems, such as the tire/road problem, is proposed in this work. The proposed MCMEM
method is a variant of the MEM method [12], where hyper-reduced and reduced internal
forces corresponding to multiple configurations are matched rather than matching the
hyper-reduced and reduced internal force and tangent stiffness matrix corresponding to
one configuration. The proposed MCMEM method uses a constant ROB consisting of
nonlinear steady-state contact configurations and eigenmodes. It is shown that care has
to be taken when including distributed contact constraints in the HROM, as locking of
the HROM can occur. When using a penalty method to enforce the constraints, lowering
the penalty factor alleviates this problem. Application of the MCMEM method to the
highly nonlinear tire/road problem shows that large speedups can be achieved, while still
retaining a relatively high accuracy. Future research will focus on the determination of
an optimal set of nonlinear constraint modes and eigenmodes for the ROB and minimal
amount of necessary MCMEM samples, as well as application of the MCMEM method to
multi-physical problems.
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