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Abstract. A new immersed boundary interpolation method for discrete forcing meth-
ods is presented. It decreases the spurious force oscillations (SFO) in the pressure field
and consequently in the body force calculations, which is a common issue in several im-
mersed boundary methods. The method applies a divergence-free constraint directly in
the velocity interpolation. It also guarantees a field continuity between each adjacent
interpolation polynomial. This approach strictly enforces a divergence-free velocity field
in the reconstruction domain, reducing the time discontinuities caused by the applied
boundary conditions near the solid boundary.

Due to its flexibility, the current method can be applied with any arbitrary unstruc-
tured grid. Several tests are carried out to validate the technique with different grid types:
polyhedral, triangular and Cartesian. The method is shown to compute the correct veloc-
ity and pressure fields independently of the grid type. The effects of the cell topology in
the SFO are studied and the polyhedral grids are proven to be superior to their Cartesian
and triangular counterparts.

Finally, some examples of moving bodies are provided, in a computational domain with
complex static boundaries. The new method allows the use of unstructured grids for the
outer fixed boundaries, providing good geometry conformance and therefore good flow
resolution.

1 Finite Volume Discretization in Unstructured Grids

The numerical methods of the bulk flow solver used have been previously verified
in several flow conditions [1, 2]. Additionally, detailed descriptions of the implemented
methods can be found in the PhD Thesis from Magalhães [3] and Albuquerque [4].

In a finite volume numerical approach, the Navier-Stokes equations of the incompress-
ible flow are transformed in their integral form, where the Gauss theorem can be applied
to the convective and diffusive terms. After this treatment, the momentum equations are
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written as: ∫
Ω

∂u

∂t
dV︸ ︷︷ ︸

temporal term

+

∫
∂Ω

uu.dS︸ ︷︷ ︸
convective term

=

∫
∂Ω

ν∇u.dS︸ ︷︷ ︸
diffusive term

+

∫
Ω

−1

ρ
∇p dV︸ ︷︷ ︸

pressure term

(1)

each of the terms in equation (1) is treated using a specific numerical scheme for un-
structured grids. To solve the coupling between momentum and continuity equations,
segregated algorithms have been developed, such as the SIMPLE [5] and the PISO [6]
ones. A detailed explanation of these two algorithms is done in the following works [4,7],
respectively.

In the case of unstructured grids, the numerical schemes must have additional correc-
tion terms that consider the local grid quality of the mesh, which can be measured using
concepts such as warp angle, also called skewness, non-orthogonality angle and volume
ratio which were described by Juretic [8].

Skewness, also known as eccentricity by some authors, refers to the distance between
a face centroid and the intersection of the face f and the distance vector d, this latter
one unities the two adjacent cells P0 and P1. Unless the interpolation considers the
face’s centroid, the method will not achieve second order accuracy due to the Gauss-
Legendre quadrature’s violation of the integral convective term. For this reason, skewness
corrections exist and solvers can achieve the desired second order accuracy even in low
grid quality meshes.

Warp or non-orthogonality angle, refers to the angle between the face’s normal and the
distance vector d. In a diffusive scheme, the simple finite difference computes the depen-
dent variable’s first derivative at a face’s centroid, however this method yields inaccurate
results when this angle is higher than zero. Both the warp angle and the skewness can be
visualized in figure 1.

Figure 1: Geometric representation of the skewness and the warp angle grid quality metrics.

2



Duarte M. S. Albuquerque, Diogo M. C. Martins and José C. F. Pereira

The convective scheme computes the face value φf of the dependent variable φ and it
is sensitive to the grid skewness. To address this issue, a special interpolation blending
factor η

TRI
and a skewness correction term proposed by Juretic [8] are considered. The

resulting convective scheme is expressed by:

φf = η
TRI

φP0 + (1− η
TRI

)φP1 + (f −P0 − ηTRI
d).(∇φ)f︸ ︷︷ ︸

skewness correction

(2)

where f is the coordinates vector of the face’s centroid. The term identified as skewness
correction makes use of the averaged cell centered gradients of the adjacent cells, ∇φ.
With this correction term, the convection scheme becomes second order accurate for most
unstructured grids.

The blending factor η
TRI

corresponds to an interpolation to the point that is geometri-
cally closer to f at the line defined by d. This factor was introduced by Albuquerque [4]
and can be computed by the following expression:

η
TRI

=
(f −P0).d

d.d
(3)

In faces with a skewness factor close to zero, this convective scheme reverts back to the
classic one, defined by a distance average since the skewness correction term goes to zero.

The diffusive scheme computes the first derivative of the dependent variable in the
normal direction of the face. For the cases with unstructured grids, a scheme with a
correction term for the warp angle based on tangential correction (TC) was used, first
proposed by Jasak [9]. This correction is required because classic schemes provide a
value of the first derivative of φ in the direction of d, while the desired value is in a
direction parallel to the face surface vector Sf . This scheme was shown by Jasak [9] and
Magalhães [3] to be superior to other warp angle correction approaches.

(∇φ)f = (φP1 − φP0)pTC
−
[
(∇φ)f − (d.(∇φ)f )p

TC

]︸ ︷︷ ︸
warp angle correction

(4)

where the vector p
TC

is obtained by decomposing the face surface vector Sf in two com-
ponents: one parallel to the distance vector d and another one tangent to the face itself.
This vector can be computed by the following expression:

p
TC

=
Sf

Sf .d
(5)

To compute the cell centred gradients, the Gauss method is used. This quantity is
required for the pressure gradient term and for the correction terms presented, previ-
ously. After applying the Gauss method to the volume integral and some mathematical
manipulation the following equation is obtained:

(∇φ)P =
1

VP

∑
f∈F(P )

φf Sf (6)
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where the second order assumption inside the cell was considered and the φf value is
computed using the previous described convective scheme. Which it self depends of the
cell centered gradient information and as a consequence it needs to be solved iteratively,
where in the first iteration the skewness correction term is neglected. Normally this
procedure convergences in three iterations.

In all unsteady simulations, an Implicit-Euler temporal scheme is used. By considering
that the Navier-Stokes equations are written in the following form:

∂φ

∂t
= F (φ, t) (7)

where F (φ, t) corresponds to all the terms of the momentum equations except the temporal
one. The Implicit-Euler scheme is then defined as:

φn+1 − φn

∆t
= F (φn+1, tn+1) (8)

where ∆t corresponds to the defined time step, φn+1 and φn are the values on the current
and previous time instances, respectively.

2 Immersed Boundary Method

The implemented immersed boundary method is based in a conservative cut approach,
which retains the shaped of all cells from the original grid and divides it into n+1 blocks.
One of these blocks, represents the fluid region and the other ones represent the solid
regions from the n solid bodies of the problem. The faces that are located between a fluid
and a solid block are identified as IB faces and cells inside a fluid region are identified as
fluid cells.

After this categorization process, a solid point is computed for each IB face, which is
the closet point from the body’s surface to the IB face. With the velocity values from the
neighbouring solid points and fluid cells of the IB face, a polynomial can be fitted with
the least-squares method. Afterwards, a velocity value at the centroid of the IB face is
computed, to impose a Dirichlet boundary condition at this location.

During the polynomial fitting of the velocity field, a divergence-free constraint is applied
to both polynomials of the velocity components, u and v, which are coupled and computed
simultaneously (in the same least-squares problem). The divergence-free condition or
continuity constraint is defined by:

∇ · u = 0 ⇒ ∂u

∂x
= −∂v

∂y
(9)

This constraint requires that some coefficients of the polynomials are related with each
other. Additionally, these polynomials are centred at the main solid point location and
have their velocity values us and vs constrained, which are always known since they are
equal to the body’s velocity. After all mathematical manipulations, the two polynomials
of the velocity field have the following form:
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(u− us) = a1x+ a2y + a3x
2 + a4y

2 + a5xy + a6x
2y (10)

(v − vs) = b1x− a1y + b3x
2 − a5

2
y2 − 2a3xy − a6xy

2 (11)

where the some coefficients of the u and v are shared due to the divergence-free constraint.
With these, the least-squares matrix is assembled by compiling the polynomials of both
velocity components, resulting in:



x1 y1 x2
1 y2

1 x1y1 x2
1y1 0 0

−y1 0 −2x1y1 0 −y2
1/2 −x1y

2
1 x1 x2

1

x2 y2 x2
2 y2

2 x2y2 x2
2y2 0 0

−y2 0 −2x2y2 0 −y2
2/2 −x2y

2
2 x2 x2

2
...

xn yn x2
n y2

n xnyn x2
nyn 0 0

−yn 0 −2xnyn 0 −y2
n/2 −xny2

n xn x2
n





a1

a2

a3

a4

a5

a6

b1

b3


=



u1 − us
v1 − vs
u2 − us
v2 − vs

...
un − us
vn − vs


(12)

where n is the number of points in the stencil. Note that in this matrix, each two
consecutive rows correspond to a single stencil point, with one row for each velocity
component.

The following method enforces a divergence-free interpolation and it was proved that
suppress the known issue of the spurious forces oscillations (SFO). More details of the
current method are explained in the work of Martins et al. [7].

3 RESULTS

3.1 Method Verification with the 2D Analytical Cavity Problem

The analytical solution of the 2D lid-driven cavity is used to study the numerical error
of the interpolation method. The problem consists of a square cavity with rigid wall
boundary conditions for all boundaries except in the upper one, where the analytical
velocity is imposed. This test case was chosen because an analytical solution to the
incompressible Navier-Stokes equations is known and it was used by several authors [10–
12]. The velocity prescribed on the upper boundary is equal to:

u(x, 1) = 16ζ1(x) (13)

v(x, 1) = 0 (14)

and the following source term β must be added to the vertical momentum equation:

β(x, y) =
8

Re

[
24

∫
ζ1(x)dx+ 2ζ ′1(x)ζ ′′2 (y) + ζ ′′′1 (x)ζ2(y)

]
−64 [Φ2(x)Ψ(y)− ζ2(y)ζ ′2(y)Φ1(x)]

(15)
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Figure 2: Error distribution of the two velocity components for the analytical cavity case with (left)
and without (right) the immersed cylinder body.

where ′ is the differential operator and the functions ζ1(x), ζ2(y), Φ1(x), Φ2(x) and Ψ(y)
are defined by:

ζ1(x) = x4 − 2x3 + x2 (16)

ζ2(y) = y4 − y2 (17)

Φ1(x) = ζ1(x)ζ ′′1 (x)− ζ ′1(x)ζ ′1(x) (18)

Φ2(x) =

∫
ζ1(x)ζ ′1(x)dx (19)

Ψ(y) = ζ2(y)ζ ′′′2 (y)− ζ ′2(y)ζ ′′2 (y) (20)

The domain consists of a 1× 1 box and the chosen Reynolds number was 1 in order to
give similar weight to both convective and diffusive terms.

The analytical solution of this problem is:

u(x, y) = 8ζ1(x)ζ ′2(y) (21)

v(x, y) = −8ζ ′1(x)ζ2(y) (22)

To demonstrate the accuracy of the immersed boundary method, a cylinder with a
radius of 0.2 is introduced in the center of the domain. In this cylinder’s solid points, the
analytical values for u and v are imposed, in the same way they would be imposed for
the case of a moving body. Afterwards, the least-squares interpolation uses information
of the solid points and neighbouring fluid cells to compute the velocities at the IB faces.

Figure 2 shows the error distribution of both velocity components obtained with and
without the immersed cylinder. It can be concluded that the interpolation of the immersed
boundary method does not introduced any significant error in the fluid region.

The main difference when using the IB method with a Cartesian grid versus an un-
structured one is the conservative cut performed and the least-squares stencil. In figure 3,
three different grids are shown with the resulting conservative cuts around a heart-shape
geometry. It can be observed that the obtained cut varies wildly with the considered grid
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type. It also affects the distance between the immersed boundary and the solid surface,
and therefore the interpolation polynomial’s domain.

Figure 3: Examples of the conservative cut for a Cartesian, triangular and polyhedral grids.

Figure 4 shows the error distribution of the method for a triangle and a polyhedral
grid, where once again, the maximum error detaches from the immersed boundary. This
observation validates the method as an accurate and robust one, which produces good
results independently of grid topology and the considered body geometry.

Figure 4: Error distribution of the velocity components for a triangular and polyhedral grid.
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3.2 2D Flapping Wing - Dragonfly Hovering Flight

The flow over a flapping wing is simulated to test the robustness of the proposed CCLS
method in the case of a moving body. This case was first introduced by Wang [13] and it
has been extensively studied by Kim and Choi [14], and Albuquerque et al. [15]. It has
also been commonly used in IB methods works [16–18].

This test case consists in a 2D elliptical wing, moving with a sinusoidal velocity along a
line with an angle θp relative to the horizontal axis, while simultaneously rotating around
its geometric center. Figure 5 represents a schematic of this wing’s movement. The wing’s
position and pitch angle of this movement can be defined by the following equations:

x(t) =
Am

2
cos(2πft) cos(θp) (23)

y(t) =
Am

2
cos(2πft) sin(θp) (24)

θ(t) =
π

4
sin(2πft) + θ0 (25)

Figure 5: Geometric diagram of the flapping wing motion different parameters.

In this variation of the movement: θp = 60◦, Am = 2.5c, f = 40Hz and θ0 = −π/4.
The wing consists of an ellipse with a thickness ratio of 8. The Reynolds number is equal
to 157, which is based on the maximum translational velocity of the airfoil.

This test case was simulated on a grid of 20c × 20c, with a 400 × 400 non-uniform
grid. In the finest region, which encompasses all body’s movement, the grid spacing is
∆x = c/80. A time step of ∆t = T/800 is used, which results in a body Courant number
of 0.79 based on the maximum translational velocity. In all outer boundaries, a pressure
outlet condition is imposed.

Figure 6 shows the comparison between the horizontal and vertical forces, CH and
CV , obtained with the proposed method and the ones presented by other works [13–15].
The present calculations show a good agreement with those respective works. Notice that
there is a slight disagreement between each work from the literature due to the different
used numerical approaches.
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Figure 6: Horizontal and vertical force coefficients for the dragonfly hovering flight problem.

3.3 2D Flapping Wing - Horizontal Flight

Another flow case was simulated to further demonstrate the capabilities of the proposed
CCLS method, which corresponds to a flapping wing in horizontal movement. Which is
defined by the following constants θp = 0◦, Am = 2.8c, f = 0.25Hz and θ0 = π/2,
corresponding to a Reynolds number of 75. It uses a 2D airfoil with a elliptical form and
a thickness ratio of 10.

This test case corresponds to the one studied by Eldredge in [19]. Once again a domain
of 20c×20c with pressure outlet in all outer boundaries is used. The grid contains 400×400
non-uniformly distributed cells, with ∆x = c/160 in the finest region. The time step is
∆t = T/800, which results in a maximum body Courant number of 0.88.

Figure 7: Instantaneous vorticity contours for the horizontal flight problem.
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Figure 7 shows the instantaneous vorticity contours at four instants of the movement.
The vorticity was nondimensionalized by the wing chord and the maximum body velocity.
An excellent agreement is observable with the results presented by Eldredge [19].

4 CONCLUSIONS

- The extension to unstructured polyhedral grids of the divergence-free interpolation
for the immersed boundary methods is described in this work. It is based in a
conservative cell cut which has the advantage of not affecting the local grid quality
due to the presence of the immersed solid body. The least-squares method used
during the interpolation process has the required flexibility to be applied in any
type of grid topology.

- The results were divided into two parts. In the first one, the accuracy of the method
is studied for a static problem with a known analytical solution. The second part
consists in cases with a moving body to show that the proposed CCLS method can
produce force curves without any type of spurious oscillations and are in agreement
with the results obtained in the literature.
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