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Abstract. One main limitation to the implementation of Structural Health Monitoring 

(SHM) systems in real structures is the influence of different boundary conditions with respect 

to those adopted during SHM system design, especially for what concerns the loads, potentially 

leading to damage misclassifications. In this context, the inverse Finite Element Method 

(iFEM), recently developed for shape sensing of shell structures, can be used to reconstruct the 

displacement field, thus the strain field, everywhere in a component on the basis of just few 

strain sensors placed in discrete positions and without requiring any a-priori knowledge of loads 

or material properties. This work proposes a methodology to perform SHM exploiting the iFEM 

algorithm for strain reconstruction. In particular, an anomaly index is defined based upon the 

comparison between the strain read at a target sensor location and the one reconstructed, in the 

same position, through the iFEM algorithm. When the analyzed structure is in a “healthy” 

condition, the two values match, otherwise they do not. The defined anomaly index enables to 

identify both the presence and the position of a defect within the structure without being 

dependent on the modelled boundary load condition. Computation efficiency is ensured by the 

iFEM algorithm itself. A very fast reconstruction of the component strain field is achieved once 

a sensors grid is established within the structure, meaning the method can be easily 

implemented in an online monitoring system. Though the method formulation is general for an 

arbitrary component geometry and damage type, the proposed methodology is experimentally 

tested by means of a clamped plate subjected to fatigue crack propagation. The results underline 

the method attractiveness for its ability to correctly detect both the presence and the location of 

the damage without any prior information on the boundary load condition and with a low 

computational effort.  
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1 INTRODUCTION 

Structural health monitoring (SHM) as a procedure aims at reducing maintenance costs and 

increasing structural safety in a variety of fields and applications, from mechanical components 

to big civil infrastructures. In general, SHM infers information about the actual health state of 

a structure based on a series of data collected by on-board sensors. Information can include the 

loads acting on the structure [1][2], as well as the damage presence, location and 

characterization [3]. 

 

In this framework, the displacement monitoring, usually referred to as shape sensing, covers an 

important role in the SHM procedure. Among the shape sensing methodologies available in the 

literature [4][5], the inverse Finite Element Method (iFEM), originally developed by Tessler 

and Spangler [6][7] for plate and shell structures, stands out for its peculiarities, allowing to 

reconstruct the deformed shape of a structure on the basis of some strain measurements without 

any a-priori knowledge of loads or material properties [8][9]. At a glance, it consists in 

minimizing in a least-squares sense a weighted error functional defined as a comparison 

between measured and numerically formulated strains. The procedure is computationally 

efficient, involving mainly matrix-vector multiplication, and fast enough for real-time 

implementation both in static and dynamic applications [10]. Furthermore, some works in 

literature confirm the iFEM robustness against noisy measurements [11]. In fact, thanks to 

intrinsic smoothing operations in the iFEM procedure, an accurate displacement field 

reconstruction by the algorithm is achieved even in presence of noisy strain measures [12]. 

 

Despite the method attractiveness for SHM systems leveraging on strain field measurements 

[13][14], for which operational variability can dampen damage detection, very few applications 

of the inverse Finite Element Method to anomaly identification [15] are present in literature. 

This work exploits the iFEM to define an anomaly index for a model-based damage detection 

and localization. The anomaly identification relies on the concept that the iFEM will reconstruct 

a strain field always compatible with the healthy model of the structure. If a non-modelled 

geometrical modification (e.g. damage) occurs in the monitored structure inducing a strain field 

perturbation, the iFEM algorithm reconstructs a strain field not representative of the reality in 

the vicinity of the damage. The proposed methodology is experimentally verified by the authors 

for a simple plate subjected to fatigue crack propagation, verifying the effect of measurement 

noise and small model uncertainties on the diagnostic capability.  

 

The paper is structured as follows. The general iFEM framework is briefly described in Section 

2. Then, the iFEM output is used in Section 3 to define an anomaly index for damage 

identification. Section 4 provides information about the specimen under test and the iFEM 

model for testing the methodology, while detection and localization results are shown in Section 

5 for different crack lengths. A conclusive section is finally provided. 

2 INVERSE FINITE ELEMENT METHOD OVERVIEW 

A brief summary of the iFEM approach to displacement and strain field reconstruction is 

provided in this section, while a more detailed description can be found in [10][16] for the 

interested reader. 
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The iFEM procedure consists in an optimization problem defined as a weighted least-squares 

variational formulation between measured (⋅𝜺) strains and a numerical formulation (⋅ (𝒖)) of 

the same, with 𝒖 referring to the implicit optimization target: the displacement field. Supposing 

the structure is discretized in shell-like inverse elements, a weighted least-squares functional 

can be defined for each of them, accounting for membrane (𝒆), bending (𝒌) and transverse shear 

(𝒈) deformations of the element mid-plane, hereon referred to as reference plane. In particular, 

for the 𝑖𝑡ℎ inverse element, the functional takes the form: 

 Φ𝑖(𝒖𝑖) = 𝑤𝑚 ||𝒆(𝒖𝑖) − 𝒆𝑖
𝜺||

2

+ 𝑤𝑏 ||𝒌(𝒖𝑖) − 𝒌𝑖
𝜺||

2

+ 𝑤𝑠 ||𝒈(𝒖𝑖) − 𝒈𝑖
𝜺||

2

     (1) 

where 𝒖𝑖 is the vector of nodal degrees of freedom in local coordinates and 𝑤𝑚, 𝑤𝑏 , 𝑤𝑠 are 

positive valued parameters associated to the membrane, bending and shear deformations, 

controlling the coherence between numerical and measured strains. 

Two items are required for the implementation of the iFEM procedure. The first is the numerical 

formulation of the 𝒆, 𝒌, 𝒈 strain components which can be defined following a procedure similar 

to the direct FEM and not detailed here for brevity. The second is the definition of a vector of 

input strain measurements (𝜺𝒊𝒏) to be used for defining 𝒆𝜺, 𝒌𝜺, 𝒈𝜺. Considering the 𝑖𝑡ℎ inverse 

element instrumented with 𝑛 strain sensors, each measuring 3 strain tensor components and 

posed at 𝑛 discrete positions 𝒙𝒋 = (𝑥𝑗 , 𝑦𝑗 , ±ℎ) (𝑗 = 1, … , 𝑛) on both the top (+ℎ) and bottom 

(−ℎ) surfaces, with ℎ referring to the surface distance from the reference plane, the 𝒆 and 𝒌 

strain components can be computed as: 

 

𝒆𝑖,𝑗
𝜺 =

1

2
{

𝜀𝑥𝑥
+ + 𝜀𝑥𝑥

−  

𝜀𝑦𝑦
+ + 𝜀𝑦𝑦

−

𝛾𝑥𝑦
+ + 𝛾𝑥𝑦

−

}

𝑖,𝑗

𝒌𝑖,𝑗
𝜺 =

1

2ℎ
{

𝜀𝑥𝑥
+ − 𝜀𝑥𝑥

−  

𝜀𝑦𝑦
+ − 𝜀𝑦𝑦

−

𝛾𝑥𝑦
+ − 𝛾𝑥𝑦

−

}

𝑖,𝑗

 (𝑗 = 1, … , 𝑛) (2) 

The strain component 𝒈, on the other hand, cannot be directly computed from the measured 

surface strain components. However, since its contribution can be neglected in most of the 

engineering applications [16], the 𝒈 formulation is neglected. 

Once the reference plane numerical (⋅ (𝒖)) and measured (⋅𝜺) strain components are defined, a 

global system of equation can be derived as in eq. (3) by applying a standard finite element 

procedure to sum up the contribution of each 𝑛𝑒𝑙 element in a single functional and then, 

minimizing it with respect to the global displacement vector 𝑼 and applying problem dependent 

boundary conditions: 
 𝑲𝑭𝑭𝑼𝑭 = 𝑭𝑭 (3) 

After the global displacement field is computed solving eq. (3), a model of the reconstructed 

strain field (𝜺𝒊𝑭𝑬𝑴) can be defined through eq. (4): 

 

{

𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

} ≡ 𝒆(𝒖𝑖) + 𝑧𝒌(𝒖𝑖)

{
𝛾𝑥𝑧

𝛾𝑦𝑧
} ≡ 𝒈(𝒖𝑖)

 (4) 

where 𝑧 is the through-the-thickness coordinate. A model 𝑀𝑖𝐹𝐸𝑀 is, thus, available for real-

time calculation of the strain field 𝜺𝒊𝑭𝑬𝑴 as a function of 𝜺𝒊𝒏 without requiring any a-priori 
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knowledge of loads or material properties (𝐸, 𝜈) since only strain-displacement relationships 

are involved in the calculations . 

3 IFEM EXPLOITATION FOR DAMAGE IDENTIFICATION 

The iFEM model 𝑀𝑖𝐹𝐸𝑀 for strain field computation (𝜺𝒊𝑭𝑬𝑴) as a function of 𝜺𝒊𝒏 is exploited 

hereafter for the definition of a synthetic index representative of the health state of the structure 

and exploitable for determining the damaged area. 

The damage identification procedure assumes a defect alters the strain field of a structure with 

respect to its normal condition. However, the iFEM model (𝑀𝑖𝐹𝐸𝑀) always reconstructs an 

𝜺𝒊𝑭𝑬𝑴 compatible with the geometrical discretization of the structure, leading to a discrepancy 

with the real strain field if the input strain measures 𝜺𝒊𝒏 are collected from 𝑛𝑖𝑛 input sensors at 

𝒙𝒊𝒏 positions in a damaged component. If a pattern of test strain measures, 𝜺𝒕, collected from 

𝑛𝑡 test sensors at 𝒙𝒕 positions is available, the structural health state can be inferred by a 

comparison between the test strain measures 𝜺𝒕 and the iFEM reconstruction, 𝜺𝒊𝑭𝑬𝑴, in the same  

𝒙𝒕 test positions. Since in most of the engineering problems a plane strain measure is usually 

available, allowing the computation of 𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝛾𝑥𝑦 strain components if a strain rosette is used, 

an equivalent strain 𝜀𝑒𝑞: ℝ3 → ℝ1 is exploited to condensate in a synthetic index all the 

information available, moving from a comparison in ℝ3 to one in ℝ1. In particular, the 

equivalent strain is selected proportional to second invariant of the deviatoric strain tensor [17], 

since it synthetizes shape change at constant volume, taking the form: 

 𝜀𝑒𝑞 =
1

√2
⋅ √(𝜀𝑥𝑥 − 𝜀𝑦𝑦)

2
+ 𝜀𝑥𝑥

2 + 𝜀𝑦𝑦
2 + 6𝛾𝑥𝑦

2  (5) 

After evaluating 𝜀𝑒𝑞 at 𝒙𝒕 positions as a function of 𝜺𝒕 and 𝜺𝒊𝑭𝑬𝑴, obtaining 𝜺𝒆𝒒,𝒕 ∈ ℝ𝑛𝑡  and 

𝜺𝒆𝒒,𝒊𝑭𝑬𝑴 ∈ ℝ𝑛𝑡  respectively, an anomaly index is computed for each test positions 𝑥𝑡 ⊂ 𝒙𝒕 as 

the percentage difference between 𝜺𝒆𝒒,𝒕 and 𝜺𝒆𝒒,𝒊𝑭𝑬𝑴: 

 𝑖(𝑥𝑡) =
𝜀𝑒𝑞,𝑡(𝑥𝑡) − 𝜀𝑒𝑞,𝑖𝐹𝐸𝑀(𝑥𝑡)

𝜀𝑒𝑞,𝑡(𝑥𝑡)
⋅ 100 (6) 

Collecting all the 𝑛𝑡 indexes defined in eq. (6) in a vector 𝒊(𝒙𝒕) ∈ ℝ𝑛𝑡 , the structural health state 

and the possible damage location can be inferred. For an healthy structure, the vector 𝒊(𝒙𝒕) is 

expected to results in a null vector, 𝒊(𝒙𝒕) = 𝟎, meaning a perfect correspondence between 𝜺𝒆𝒒,𝒕 

and 𝜺𝒆𝒒,𝒊𝑭𝑬𝑴 holds for each test sensor position 𝑥𝑡. On the contrary, for a damaged structure, 

some deviations from zero will occur in the test positions close to the damage, due to the 

difference between the reconstructed strain field 𝜺𝒊𝑭𝑬𝑴, always compatible with the healthy 

structure, and the measured one, 𝜺𝒕, function of the health state. 

 

The equivalent strain defined in eq. (5) assumes that three strain tensor components are measured 

at each 𝑥𝑡 test sensor position. However, in realistic structures one has to limit the number of 

measures, possibly measuring just one single strain component (e.g. through fiber optic sensors) 

in structures possessing preferential load transfer capabilities. In case of mono-axial strain 

component measurement, the equivalent strain of eq. (5) assumes the trivial form: 
 𝜀𝑒𝑞 = 𝜀𝑥𝑥 (7) 
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The latter approach is followed in this work demonstrating the method attractiveness for 

anomaly identification on a simple plate instrumented with a fiber optic system as described 

hereafter in Section 4. 

4 EXPERIMENTAL TEST 

An experimental verification of the proposed method for anomaly identification has been 

performed by means of a simple plate subjected to a fatigue propagation test. In this section a 

description of the specimen, as well as of the test and the iFEM model are provided. 

4.1 The specimen 

The approach for damage identification is tested on a clamped plate subjected to a cyclic load 

in the X direction. The plate has a length of 150 mm, a width of 60 mm and a thickness of 2mm 

(Figure 1). 

 

 
 

The plate is made of Aluminum 2024 with an elastic modulus of  73 𝐺𝑃𝑎 and a Poisson’s ratio 

of 0.33.  

The specimen, representative of the plate in Figure 1, is shown in Figure 2 and it is composed by 

two main parts: (i) the plate and (ii) the gripping system. The latter is used to fix the specimen 

to the fatigue test machine and to provide an almost uniform load to the upper and lower plate 

boundaries (Figure 1). A 10 𝑚𝑚 artificial notch is also created in the middle of the plate to 

facilitate crack initiation. 

 

As described in Section 3, the damage identification procedure relies on the comparison 

between the strain measured in some positions and that reconstructed through the iFEM in the 

same locations. In this work, the applicability of the damage identification procedure is 

demonstrated with strain measures collected by a Luna fiber optic ODISI B system. This fiber 

optic technology can provide a very dense measurement path along the optical fiber, thus 

offering a very high number of available measuring positions within a single cable. Specifically, 

a 2 𝑚 long fiber optic, fixed to the specimen with a DP 490 epoxy glue and possessing 

measuring points spaced by 2.6 𝑚𝑚 from each other, is used in this work to provide the 

algorithm with both the input (𝜺𝒊𝒏) and test (𝜺𝒕) strain measures.  

Figure 1: Plate dimensions (mm), boundary condition and crack position 
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4.2 Test description 

The experimental test is performed through an axial fatigue machine MTS Landmark (Figure 3) 

with a maximum force capacity of 100 𝑘𝑁.  

 

 

 

 
 

In order to reduce the amount of data to be analyzed, the strain measures are not collected 

continuously during the fatigue test but at discrete time instants. For this reason, the test was 

performed in the following steps: (i) a certain number of cyclic loads in the X direction, with a 

stress ratio 𝑅 = 0.1 and a maximum load of 15 𝑘𝑁, are applied in X-direction to propagate the 

crack; then, (ii) a static load of 15𝑘𝑁 is applied in the X direction to open the crack edge, 

generating the characteristic strain field of a cracked structure and the data for anomaly 

identification are collected; (iii) finally, the latter are analyzed offline through the in-house 

developed anomaly identification software.  

Figure 2: Sensorized specimen 

Figure 3: Detail of the specimen mounted on the MTS Landmark machine; an artificial notch can be noted 

in the middle of the plate 
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4.3 The iFEM model and sensor configurations 

The last step in the anomaly identification pre-processing procedure requires the definition of 

the structure geometrical discretization (i.e. mesh, boundary conditions and element 

connectivity) and of the input (𝒙𝒊𝒏) and test (𝒙𝒕) strain sensor grids. 

 

The method presented in Section 3 is based on the assumption that a damage alters the strain 

field within the analyzed structure. A model of a healthy structure produces a discordant output 

with respect to the real condition if the input is collected from a damaged structure. Since at the 

beginning of the service life the component can be reasonably assumed to be undamaged, the 

iFEM model presents no hints of crack presence in the element connectivity, producing a non-

matching strain field with the test measures (𝜺𝒕) when the real structure is damaged. In 

particular, only the central part of the specimen in Figure 2 is numerically modelled since the 

remaining parts serve just as anchoring areas on the axial fatigue machine. The plate is 

discretized by means of a rather coarse mesh composed by 960 inverse elements with a 

dimension of 5 𝑚𝑚, thus requiring a very low computational effort in view of a future real-

time implementation of the method. As anticipated in Section 2, no material property (𝐸, 𝜈) 

information is passed to the iFEM, since only strain-displacement relationships are employed 

in the method. 

Two different sensor grids are defined for the input (𝜺𝒊𝒏) and test (𝜺𝒕) strains (Figure 4). Since, 

in reality, one is not able to provide each element with a strain measure for technical and 

practical issues, only some of the inverse elements available are instrumented. In particular, the 

input grid is composed by sensors placed close to the lateral edges of the specimen measuring 

along the X direction plus 3 additional sensors within the plate measuring the plate striction 

(Figure 4a), while the test sensors are located in the middle of the plate (Figure 4b). Notice that 

the test sensors configuration is chosen considering sensors whose measures were not corrupted 

by the acquisition system.  

As already anticipated in Section 2, a key step for the iFEM algorithm usage is to convert the 

input surface measures (𝜺𝒊𝒏) into reference plane strains. Since the experiment was conducted 

with an axial fatigue machine producing equal strain field on both the plate surfaces, only one 

face was instrumented, assuming the opposite surface strains equal to the measured ones. 

  
(a) (b) 

 

Figure 4: Strain sensor positions along the optical fiber; (a) Input sensors positions (𝒙𝒊𝒏): in red sensors 

measuring along the X direction, in black sensors measuring along the Y direction; (b) Test sensors 

positions (𝒙𝒕) 
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5 RESULTS 

The damage identification outcomes for the clamped plate described in Section 4.1 and subject 

to a fatigue crack propagation are presented in this section. Subplots in Figure 5 present the 

anomaly index results, computed for each test positions, for different crack lengths. The same 

color scale for all the subplots is used in order to facilitate understanding the effect of the 

damage extension on the method. 

 

 

  
(a) (b) 

  
(c) (d) 

 
 

Table 1: Peak value of the anomaly index (in magnitude) for different crack lengths 

Crack length (mm) Anomaly index peak value in magnitude (%) 

3.83 4.1683 

5.61 6.9943 

7.1 9.7268 

9.38 11.5628 

15.53 20.1481 

18.81 27.2939 

22.19 36.4573 

26.8 56.5510 

30.71 72.4956 

 

 

Figure 5: Anomaly index computed under different crack lengths; (a) crack of 3.83 𝑚𝑚; (b) crack of 9. 38 𝑚𝑚 

(c) crack of 18.81 𝑚𝑚; (d) crack of 30.71 𝑚𝑚. The crack is always located in the center of the plate, with 

orientation as in Figure 1. 
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The peak values (in magnitude) of the anomaly index are also reported in Table 1 for increasing 

crack lengths. As described in Section 4.1 an artificial notch was created to facilitate crack 

initiation, thus, in order to appreciate just the effect of crack growth on the anomaly index, the 

results are cleaned from the influence of the artificial notch. First, it can be appreciated the high 

damage sensitivity of the index, reflected in a significant variability of the index with respect 

to the undamaged situation in which its values are close to zero. In fact, with the target sensors 

grid of Figure 4b, the index is able to detect a damage due to a crack with a length of just about 

4 𝑚𝑚. Furthermore, the results in Figure 5 clearly point out the method possesses a quite 

extended detection area. Indeed, a significant peak change in the index values with respect to 

the normal condition, denoting the presence of a defect, is found despite the closest sensor is 

located at a remarkable distance from the damage, thanks to the peculiar strain field perturbation 

due to presence of the crack. 

 

Second, the index correlation to the damage size can be recognized. The greater the crack 

length, the greater the anomaly index peak, moving from a value of about 4.2 % with a crack 

length less than 4 𝑚𝑚, up to a value of about 72.5 % when the crack length is about 31 𝑚𝑚. 

Moreover, since the index is normalized by the load through the strain (eq.(6)), for a given type 

of load (e.g. axial load), it is only function of the actual health state of the structure. 

 

Finally, the index distribution in Figure 5 suggests the possibility of exploiting the anomaly 

index also for damage localization. In fact, considering the fiber optic layout within the plate, 

the peak magnitude of the index is found in the closest location with respect to the crack edge. 

The latter consideration means that, given a test sensors grid is properly designed for the 

particular application and as a function of the desired sensitivity, the anomaly index can be also 

exploited for determining the position of a possible damage within a structural component. 

6 CONCLUSIONS 

In this work, a new feature for anomaly identification is defined based on the inverse Finite 

Element Method. The iFEM ability to reconstruct the strain field of a structure as a function of 

discrete strain measurements without requiring any a priori knowledge of the applied load and 

material properties is exploited to define a strain-based damage sensitive feature easily 

implementable in damage identification scenarios. 

 

An anomaly index is defined as the percentage difference between an equivalent strain 

calculated from a strain measure at a test sensor position and the one computed through the 

iFEM strain reconstruction in the same location. For a properly discretized healthy structure the 

two equivalent strains match, generating a pattern of zero valued anomaly indices in the test 

positions. On the contrary, a modification in the real strain field due to a defect is reflected in a 

mismatch between the two parameters, leading the anomaly index to largely differ from zero in 

the test positions close to the damage. 

 

The experimental results confirm the validity of the proposed method. A significant sensitivity 

to a fatigue crack defect is noticed in a clamped plate subjected to a fatigue crack propagation 

test, reflected in a significant peak value deviation from zero, the latter representing the baseline 



L. Colombo, C. Sbarufatti and M. Giglio 

 10 

healthy condition. Furthermore, for a given type of load, the index is only function of the actual 

health state of the structure with increasing peak value as a function of the damage size. The 

index distribution within the plate suggests also a possible exploitation for damage localization, 

with the peak value found in correspondence of the closest position to the defect considering 

the fiber optic disposal within the component. The method robustness against noisy measures 

is also positively confirmed. Indeed, intrinsic smoothing procedures, included in the iFEM 

procedure facilitating displacement reconstruction, allow a good strain field reconstruction also 

with noisy measurements.  

 

Despite the results presented in this work are obtained with a reduced form of the equivalent 

strain, since the tested plate was instrumented with a mono-axial strain sensor (i.e. optical fiber) 

thanks to a preferential load transfer capability, the method can be also implemented with an 

extended version leveraging on the equivalent strain, if more complex load configurations are 

applied. Indeed, though not reported here being matter of present and future research by the 

authors, if three strain tensor components are measured, e.g. through a strain rosette, a load-

adaptive baseline can be defined, meaning a feature insensitive to operational variations can be 

easily created, further increasing the method attractiveness for more complex geometries and 

load conditions. 
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