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Abstract. The investigation of the pressure developed by a collapsing cavitation bub-
ble is of primary interest for hydraulic turbomachineries, fuel injectors, naval propulsion
systems and biomedical technologies. One of the most critical consequences is the shock
wave emitted by bubbles collapse and the structural damage resulting when this process
takes place close to solid walls. This paper presents a numerical study of the interac-
tion between a planar incident shock wave with a gas bubble. Simulations are performed
using an inviscid compressible one-fluid solver composed by three conservation laws for
mixture variables, namely mass, momentum and total energy along with a supplementary
transport equation for the volume fraction of the gas phase.

1 INTRODUCTION

Cavitation erosion is a major problem for hydraulic and marine applications. This
phenomenon occurs when vapor bubbles collapse in the vicinity of solid walls leading
to negative consequences, such as vibrations, material damages and performance loss.
To clarify the physical mechanism, numerous experimental and numerical studies of the
collapse of cavity in water under shock wave loading have been proposed [10, 1, 11, 5, 4, 9].
The bubble collapse close to the wall has been addressed as the fundamental mechanism
producing damage. Its general behavior is characterized by the formation of a water jet
that penetrates through the bubble and the generation of a blast wave during the induced
collapse. Both the jet and the blast wave are possible damaging mechanisms.
In the present study, the shock induced collapse of a gas bubble located near a wall is
numerically investigated. We describe the main characteristics of the phenomenon with
particular consideration of the maximum wall pressure. A key parameter is the distance
between the bubble center and the wall. Simulations are performed using an inviscid
compressible one-fluid code based on a four-equation system. It consists in solving three
mixture conservation laws for the mass, momentum and energy and a transport-equation
for the gas volume fraction [2, 3].
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2 EQUATIONS AND MODELS

The homogeneous mixture approach is used with the assumption of thermal and me-
chanical local equilibrium between pure phases. We consider a reduction of the five-
equation model of Kapila [6]. The model consists in three conservation laws for mixture
mass, mixture momentum and total energy together with an additional equation for the
void ratio [2]. The expression for the void ratio equation α is given by:
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where ck are the speed of sound of phase k and ~V the mixture velocity vector. The system
has a hyperbolic nature with eigenvalues: u − cwallis, u, u, u+ cwallis, where cwallis is the
the propagation of acoustic waves without mass and heat transfer. This speed of sound
is expressed as a weighted harmonic mean of speeds of sound of each phase:
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The stiffened gas EOS is used for both pure phases. From the thermal and mechanical
equilibrium assumption, an expression for the mixture pressure and temperature can be
deduced :
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T (ρ, h, Y ) =
h− q(Y )

Cp(Y )
with Cp(Y ) = Y Cpv + (1− Y )Cpl (9)

where Y = αρv/ρ is the mass fraction of gas, γ = Cp/Cv is the heat capacity ratio, Cp

and Cv are thermal capacities, q the energy of formation of the fluid and and P
∞

is a
constant reference pressure.
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3 NUMERICS

Numerical simulations are carried out using an in-house finite volume code solving the
compressible inviscid system [3]. Numerical fluxes are computed with a HLLC scheme.
The second-order is obtained through the MUSCL extrapolation and the minmod slope
limiter is used. The explicit time integration is performed using a 3-step Runge-Kutta
method. The numerical treatment of the boundary conditions is based on the inviscid
characteristic relations.

4 PRELIMINARY RESULTS

The considered test is similar to the one presented in [8]. A cylindrical air bub-
ble, 6 mm in diameter, is immersed in a water pool, under the following initial con-
ditions: ~V = (0, 0) m/s, P = 105 Pa, ρair = 1 kg/m3 and ρwater = 1000 kg/m3.
Due to the symmetry of the problem, we only consider a half bubble. The center of
the bubble is located at (9, 0) mm in the computational domain of size 24 × 12 mm.
The bubble is collapsed by a normal shock wave moving at Msh = 1.72, initially lo-
cated at abscissa xsh = 4 mm. Parameters of the EOSs and post-shock conditions are:
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The schematic diagram of the test case is given in Figure 1 (left part).

x (m)

y
(m

)

0.005 0.01 0.015 0.020

0.004

0.008

0.012 Msh=1.72

t (s)

P
m

ax
(b

ar
)

2E-06 3E-06 4E-06 5E-06 6E-06
20000

40000

60000

80000

100000

120000
2D
3D

Figure 1: Initial situation for the bubble collapse (left) and evolution of the maximum pressure Pmax

during the bubble collapse (right).

Two-dimensional simulations are performed using an uniform 1200 × 600 mesh cells
and a time step ∆t = 10−9 s. For the three-dimensional case, the mesh is extruded in the
spanwise direction and is composed of 1200× 600× 600 cells.

The evolution of the density gradient modulus (Schlieren-type representation) and
the pressure (in bar) are plotted in Figure 2 at different instants for the 2D collapse.
After the water shock wave has collided with the bubble, a strong rarefaction wave is
reflected backwards from the interface, and a weak shock wave is transmitted inside of

3



E. Goncalves and P. Parnaudeau

the bubble (time t = 2µ s). Due to the pressure difference between both sides, the bubble
is asymmetrically contracted and spreads laterally in the process, which induces a jet of
water along the axis of flow symmetry. When this water jet impacts the right interface of
the bubble (at time t=3.6 µs), an intense blast wave is formed generating a high-pressure
zone. The blast front, which expands continuously, is highly asymmetric due to the high-
speed water jet (see Figure 2 at time t = 4.2µ s). The interaction of the leftward front
wave with the bubble fragments lead to high pressure levels (at time t=4.8 µs).

Figure 2: Evolution of the density gradient modulus and the pressure (in bar) at times t=2, 3.6, 4.2
and 4.8 µs. 2D simulation.

Table 1: Comparison of results from 2D and 3D simulations

2D 3D
first peak time (µs) 3.8 3.4

first peak intensity (bar) 40000 69000
second peak time (µs) 4.7 4.1

second peak intensity (bar) 70000 110000

The pressure evolution for the 3D collapse are illustrated in Figure 3 at different in-
stants. The jet penetration inside the bubble and the toroidal shape are clearly illustrated.
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The jet impacts the bubble interface generating the intense blast wave. The blast fronts
propagate in both direction and the leftward front collides the bubble pieces leading to a
high-pressure peak.

Figure 3: Evolution of the pressure (in bar) at different times t=2, 3.4, 3.8 and 4.2 µs. 3D simulation.

The evolution of the maximum pressure during the cavity collapse is plotted in Figure 1
(right part) for both 2D and 3D simulations. We can observed the first peak after the
water jet impacts the bubble front and the second peak (more intense) when the leftward
blast wave collides the bubble fragments. As observed previously [4], the collapse process
of a spherical bubble is faster and more intense, resulting in higher pressure peaks. Table
1 compares various quantitative measures between 2D and 3D simulations. The more
intense peak reaches 111000 bar for the 3D case (50% more than the 2D collapse). These
effects are due to the higher focusing that the 3D situation entails, which lead to a faster
water jet.

5 3D BUBBLE COLLAPSE NEAR A WALL

The second test is an extension of first one considering a wall placed behind the bub-
ble at an initial distance from the center L. The ratio L/R is a major parameter that
governs the bubble collapse dynamics. As suggested in [5], the bubble initially located at
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a distance lower than L/R= 2 presents high potential to cause damage. We consider the
case for which the distance L = 5 mm (L/R = 1.66). Numerical parameters are similar
to the previous case. The size of the computational domain is 14 × 12× 12 mm and the
mesh contains 1150 × 800 × 800 cells. Due to the stiffness of the case, the time step is
decreased to 10−10 s.

Three-dimensional views of the bubble are given in figure 4 where is plotted the pressure
field (in bar) at different times. At time t= 3.25 µs, the jet has collided the right interface
generating the intense blast wave. At time t= 3.6 µs, the incident shock impacts the wall
and the bubble breaks into two parts. The bubble takes the shape of a vortex ring and
convects towards the wall.

Figure 4: Evolution of the pressure (in bar) at different times t=2.8, 3.25, 3.6 and 3.8 µs. 3D simulation.

The pressure evolution along the wall is given in Figure 5 at different times. The axis is
represented by the left corner. The size of the square is 7.5× 7.5 mm. First, the incident
shock wave impacts the wall (time t= 3.6 µs). A peak (around 100000 bar) is observed
on the axis when the rightward blast front impacts the wall (time t= 3.8 µs) and reflects
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Figure 5: Evolution of the wall pressure (in bar) at different times t=3.6, 3.8, 4, 4.15, 4.3 and 4.65 µs.
3D simulation.

as a reinforced shock wave generating a very high-pressure area. The maximum value
(around 150000 bar at a distance 2.5 mm from the axis) is due to this reflected wave and
its focus with the spherical blast front at time t= 4 µs. At time t= 4.15 µs, another peak
is observed along the axis (around 127000 bar) in the region near the throat formed by
the bubble torus. In addition, many other pressure peaks are observed due to multiple
wave reflections between the wall and the bubble. It suggests extensive regions of high
pressure, which could induce stresses and thus a potential damage on the material.
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Figure 6: Evolution of the pressure along the wall. 2D simulation

In comparison, the pressure evolution along the wall obtained from the 2D simulation
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is plotted in Figure 6. At time t= 4.2µs, the blast wave impacts the wall. A high-pressure
are is generating by the reflected wave (time t= 4.4µs) which propagates toward the
bubble. The maximum value (around 100000 bars) is reached along the axis at time t=
5 µs. The intensity for the 3D collapse is therefore 50% more than the 2D case and the
location of the maximum value on the wall is not the same.

6 CONCLUSIONS

A three-dimensional compressible one-fluid tool is used to simulate a spherical gas
bubble collapse near a wall. The distance from the bubble center is L/R = 1.66. It is
observed that a region of high-pressure is created after the blast wave reflects on the wall.
This high-pressure area is not located along the axis but at a distance smaller than the
bubble radius. In comparison with a 2D simulation, the pressure peak on the wall is 50%
more intense. In future work, we plan to study the wall distance effect.
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