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Abstract. In this study, novel numerical approaches to handle the volume and surface
integration terms of discontinuous Galerkin (DG) methods are proposed to significantly
reduce computational costs especially on higher-order curved elements. One approach,
called Direct Quadrature Method (DQM), generates a quadrature rule directly on the
physical domain for a given set of points that are optimized to have well-conditioned
Vandermonde matrix. The other one, called Direct Reconstruction Method (DRM), re-
expresses the flux terms as Lagrange polynomials directly on the physical domain and
integrates them in the pre-processing step. Since the proposed methods directly handle
the integrations on the physical domain, they solely rely on the order of the solution
approximation, not on the order of the elements. Thus, they are particularly efficient on
higher-order curved elements. In order to evaluate the proposed methods, two bench-
mark problems of the compressible Euler equations are computed on high-order curved
quadrilateral meshes in two dimensions. Results verify that the proposed methods re-
duce the substantial amount of computational cost without compromising the required
order-of-accuracy.

1 INTRODUCTION

The high-order methods are emerging as the latest trend in computational fluid dy-
namics (CFD) community to simulate more complex flow problems with better resolution
and less numerical damping. Among the high-order methods based on finite element
methods (FEM), the DG method has been the most popular because of its mathemati-
cal and numerical rigor, grid flexibility of shape functions and intuitive formulation [1].
The high-order methods, however, still face a few obstacles such as shock-driven instabil-
ities and severe computational costs, which severely limit their applicability. Particularly,
heavy computational cost mainly prevents both academia and industry from applying the
high-order methods to practical real-life problems.
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In the DG method, efficient handling of numerical integrations in its weak formulation
is a critical component to determine numerical accuracy and efficiency. Conventional ap-
proaches to integrate these terms are based on the prescribed quadrature rules that are it-
eratively calculated and optimized on the reference domain. Its computing costs, however,
exponentially increase according to the element order because coordinate transformation
to the reference domain contains very high-degree polynomial terms that require even
higher-order quadrature rules. In the case of three dimensions, for example, the number
of quadrature points for the volume integration is proportional to the cubic orders of both
solution approximation and element, and on top of it, state variables and flux functions
should be evaluated at each point. This greatly increases the computational cost of the
DG method. In order to resolve these difficulties, novel numerical approaches to integrate
the surface and volume integral terms appeared in the DG method are considered.

From analysis and validation, the proposed methods are turned out to be much more
efficient than the conventional one. Direct integrations on the physical domain without co-
ordinate transformation make them independent of the element order, which significantly
increase computational efficiency in higher-order elements. The present work is organized
as follows. In Section 2, we briefly review the DG formulation and conventional way
of handling the integration terms. In Section 3, two novel approaches, called the DQM
and DRM approaches, are provided to efficiently compute the numerical integrations in
the DG formulation. These new approaches are applied to some representative bench-
mark problems and compared with the conventional one in Section 4. Finally, concluding
remarks and future works are given in Section 5.

2 Discontinuous Galerkin Formulation

We consider the hyperbolic conservation laws

∂q

∂t
+ ∇ · F = 0 (1)

subjected to the well-posed initial condition q(x, 0) = q0(x) and boundary conditions on
the appropriate physical domain Ω = ∪Ni=1Ωi, where Ωi is a non-overlapping polygonal

element. The flux function is given by F =
[
F 1, · · · , F d

]T
, where d is dimension. We

assume that Eq. (1) is scalar for the purpose of simplicity, but it can be easily extended
into vector equations.

In the DG method, the approximated solution is contained in a global function space
Vh = ⊕N

i=1V
i
h , where V i

h ≡ span{φ(j)
i }j=1,··· ,Nk

and φ
(j)
i are basis functions that are usually

chosen to be the orthonormal polynomials in Pk(Ωi). Here, Pk(Ωi) is a set of kth-degree

polynomials defined on Ωi. For a given element configuration, φ
(j)
i can be simply computed

by using the modified Gram-Schmidt (MGS) process [2]. Multiplying the basis function
to Eq. (1) and integrating it over Ωi, we can get the following weak formulation.∫

Ωi

∂qh
∂t

φ
(j)
i dV +

∫
∂Ωi

φ
(j)
i F̂(q−h , q

+
h ) · ndA =

∫
Ωi

F ·∇φ
(j)
i dV . (2)
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Here, F̂ is a monotone numerical flux from the finite volume method. Applying the
orthonormality of the basis polynomials, the first term on the LHS of Eq. (2) is re-
expressed as ∫

Ωi

∂qh
∂t

φ
(j)
i dV =

d

dt

 q
(1)
i
...

q
(Nk)
i

 , (3)

where q
(j)
i are the modal coefficients satisfying

qh(x, t) =

Nk∑
j=1

q
(j)
i (t)φ

(j)
i (x) (4)

on each cell Ωi. The second term on the LHS and the RHS term of Eq. (2) are the
surface and volume integrations, respectively. In order to achieve the formal order-of-
accuracy, those integrations should be computed with the (2k+1)th- and (2k)th-accuracy,
respectively.

A conventional way to integrate the terms in Eq. (2) is to apply pre-determined numer-
ical quadrature or cubature rules on the reference domain. There are lots of quadrature
or cubature rules in literatures that were iteratively computed and optimized for vari-
ous reference element configurations. These reference elements usually contain triangle
and quadrilateral in two-dimensional case, and tetrahedron/hexahedron/prism/pyramid
in three-dimensional case. These are common element types in mixed meshes. Let Ti be
an invertible transformation mapping from the reference element Ω̃ to a physical element
Ωi in the physical domain.

Ti : r = (ξ, η, χ) ∈ Ω̃ 7→ x = (x, y, z) ∈ Ωi. (5)

Here, the tilde symbol indicates the reference domain. Applying coordinate transforma-
tion, the volume and surface integration terms of Eq. (2) are re-expressed as follows.∫

Ω̃

|J|(F ·∇φ) ◦ TdV , (6)

∫
∂Ω̃

|J|
{

(φF̂) ◦ T
}
· (J−1)T ñdA, (7)

where J is the Jacobian matrix of the transformation. For convenience, we delete the cell
index i and the basis index j without any confusion. Both integrations are then computed
using a consistent quadrature rule with the required accuracy.

For simplex elements, the transformation for high-order curved Pn-elements consists
of nth-degree polynomials. Thus, the formal degrees of the integrands of Eqs. (6-7), which
are denoted as dv,d and df,d, respectively, are given as follows.

dv,d = 2kn+ d(n− 1), (8)
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df,d = (2k + 1)n+ (d− 1)(n− 1), (9)

where d is dimension. The minimum possible number of optimal quadrature points for
Eqs. (6-7) is then estimated as

Nv,d =

⌈
(dv,d+d)Cd

d+ 1

⌉
∼ O((kn)d), (10)

Nf,d =

⌈
(df,d+d)Cd

df,d + d

⌉
∼ O((kn)d−1), (11)

where d·e is the ceiling symbol. As shown in Tabs. (1-2), they rapidly increase according
to the orders of approximation and element.

A huge number of quadrature points pose a few hurdles. Firstly, very high-order
quadrature rules are rarely presented in literatures. Secondly, even higher quadrature
rules are necessary for over-integration techniques, say, to prevent aliasing-driven insta-
bilities in turbulent simulation. Such higher quadrature rules are not only unpractical in
actual computations, but also leading to severe computational burden since they require
a large number of flux evaluations and state variable computations for a huge number
of quadrature points. Thus, it is essential to develop efficient and practical methods to
handle the integration terms of the DG method. From this perspective, we propose newly
developed integration methods for both the volume and surface integrations; (1) Direct
Quadrature Method (DQM) and (2) Direct Reconstruction Method (DRM).

Table 1: Minimum possible numbers(Nv,d) of optimal quadrature points for DG volume integration
of Eq. (6) on two- and three-dimensions(d) with respect to the orders of DG approximation(k) and
element(n). Element is assumed to be simplex

d 2 3

k 1 2 3 4 5 6 1 2 3 4 5 6

n

1 2 5 10 15 22 31 3 9 21 42 72 114
2 10 22 40 64 92 126 30 91 204 385 650 1015
3 22 51 92 145 210 287 114 333 732 1364 2285 3548
4 40 92 166 260 376 514 285 819 1785 3311 5525 8555
5 64 145 260 409 590 805 575 1637 3548 6559 10920 16882
6 92 210 376 590 852 1162 1015 2870 6201 11440 19019 29370

3 Proposed Numerical Integration Methods

3.1 Direct Quadrature Methods (DQM)

3.1.1 DQM for Volume Integration

Here, the volume integration is directly computed by the newly provided quadrature
rules on the physical domain. Unlike the conventional approach that has been executed
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Table 2: Minimum possible numbers(Nf,d) of optimal quadrature points for DG surface integration Eq.
(7) on two- and three-dimensions(d) with respect to the orders of DG approximation(k) and element(n).
Element is assumed to be simplex

d 2 3

k 1 2 3 4 5 6 1 2 3 4 5 6

n

1 2 3 4 5 6 7 4 7 12 19 26 35
2 4 6 8 10 12 14 15 31 51 77 109 145
3 6 9 12 15 18 21 35 70 117 176 247 330
4 8 12 16 20 24 28 64 126 210 316 442 590
5 10 15 20 25 30 35 100 199 330 495 694 925
6 12 18 24 30 36 42 145 287 477 715 1001 1335

in the reference domain, this does not require any transformation during runtime com-
putation. In order to create a quadrature rule to compute the volume integration term
with an optimal order-of-accuracy, we need to choose a proper target space that covers
F · ∇φ on the physical domain. Since the solution is approximated by the kth-degree
polynomials, the target space is trivially given by

F ·∇φ ∈ P2k(Ω). (12)

Then we can find an orthonormal basis set {ϕ(j)}j=1,··· ,N2k
that spans the target space by

using the MGS process with the monomials of P2k(Ω) as initial bases. Every quadrature
rule should satisfy the following equations.

N2k∑
m=1

wmϕ
(j)(xm) = δ1,j

∫
Ω

ϕ(j)dV , (13)

where δa,b is Kronecker delta. Here, the lowest mode, ϕ(1), is a constant that satisfies
orthonormality, i.e. ∫

Ω

ϕ(i)ϕ(j)dV = δi,j. (14)

Thus,
∫

Ω
ϕ(1)dV =

√
|Ω|. Equation (13) is generally a system of non-linear equations that

has wm and xm as unknowns, and it requires an iterative method such as the Newton-
Rapson method that requires heavy computing cost. If we pre-determine the coordinates
of the quadrature points, however, Eq. (13) would be nothing but a system of linear
equations that only has wm as unknowns, and thus it just requires one matrix inversion
that is much more efficient than the Newton-Rapson iteration. The resulting quadrature
rule has a very small number of quadrature points compared with the conventional meth-
ods as shown in Tabs. 1 and 3. At the same time, the number of quadrature points is
independent on the element order.

It still remains how to choose the quadrature points for a given element configuration.
One direction is to minimize the condition number of the matrix in Eq. (13). For a
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reference triangle, we already know, as a proper candidate, a set of the alpha-optimized
points [1]. For an arbitrary high-order curved triangle, however, it is not practical to
find such points one by one. Thus, we use the transformed alpha-optimized points by
the element transformation T. For a reference quadrilateral, we use a kind of brute
force approach to find a set of points that has a relatively small condition number. For an
arbitrary high-order curved quadrilateral, we use the transformed points. The coordinates
of such points are provided in Appendix A.

Table 3: The numbers of quadrature points of DQM for the DG volume integration on two- and three-
dimensions(d) with respect to the orders of DG approximation(k) and element(n). Effective regions are
shaded.

d 2 3

k 1 2 3 4 5 6 1 2 3 4 5 6

n

1 6 15 28 45 66 91 10 35 84 165 286 455
2 6 15 28 45 66 91 10 35 84 165 286 455
3 6 15 28 45 66 91 10 35 84 165 286 455
4 6 15 28 45 66 91 10 35 84 165 286 455
5 6 15 28 45 66 91 10 35 84 165 286 455
6 6 15 28 45 66 91 10 35 84 165 286 455

3.1.2 DQM for Surface Integration

In the similar way described in Section 3.1.1, the surface integration can be directly
computed by the newly provided quadrature rules on the physical domain. In order to
do this, we firstly find a target space for the integrand φF̂ · n. Note that this term is not
covered by polynomial space because the normal vector is not a polynomial on arbitrary
high-order curved surface. In this case, the proper target space is given by

φF̂ · n ∈
[
P2k+1(Ω)

]d · n ≡ P2k+1(Ω)n1 + · · ·+ P2k+1(Ω)nd. (15)

Then we can find a basis set {ϕ(j1)n1 + · · · + ϕ(j1)nd}(j1,··· ,jd)=(1,··· ,N2k+1)d , where ϕ are
derived by the MGS process. As shown in Section 3.1.1, the number of quadrature points
for DQM is the same as the number of basis of the target space. The required number of
point for applying DQM to the surface integration is shown in Tab. 4. Effective region
of DQM, however, is rather small for practical purpose. Thus, we will not consider DQM
for the surface integration in this work. Instead of DQM, DRM is provided in the next
section.
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Table 4: The numbers of quadrature points of DQM for the DG surface integration on two- and three-
dimensions(d) with respect to the orders of DG approximation(k) and element(n). Effective regions are
shaded.

d 2 3

k 1 2 3 4 5 6 1 2 3 4 5 6

n

1 20 42 72 110 156 210 60 168 360 660 1092 1680
2 20 42 72 110 156 210 60 168 360 660 1092 1680
3 20 42 72 110 156 210 60 168 360 660 1092 1680
4 20 42 72 110 156 210 60 168 360 660 1092 1680
5 20 42 72 110 156 210 60 168 360 660 1092 1680
6 20 42 72 110 156 210 60 168 360 660 1092 1680

3.2 Direct Reconstruction Methods (DRM)

3.2.1 DRM for Volume Integration

The volume integration is computed by directly reconstructing the target integrand us-
ing the nodal basis polynomials in the physical domain. In expressing the total integrand,
F ·∇φ, as a linear combination of the nodal basis, we only represent the flux function by
the Lagrange polynomials since the exact value of φ is already known.

F =

Nk+1∑
m=1

F(xm)`(m), (16)

where ` are the Lagrange polynomials with `(a)(xb) = δa,b. We assume the flux function
is in [Pk+1(Ω)]d. Let {ϕ(j)}j=1,··· ,Nk+1

be a set of basis spanning Pk+1(Ω). Moreover, the
following is valid.

φ(j) = ϕ(j), for j = 1, · · · , Nk. (17)

The Lagrange polynomials can be easily derived by the following relation.

L ≡

 `(1)

...
`(Nk+1)

 = V−1

 ϕ(1)

...
ϕ(Nk+1)

 ≡ V−1ϕ, (18)

where V is the Vandermonde matrix with V(i,j) = ϕ(i)(xj). Thus, we have∫
Ω

F ·∇φdV =

∫
Ω

d∑
i=1

(Fi · L)
dφ

dxi
dV =

∫
Ω

d∑
i=1

(Fi ·V−1ϕ)
dφ

dxi
dV

=
d∑

i=1

[(∫
Ω

dφ

dxi
ϕTdV

)
(V−1)T

]
Fi ≡

d∑
i=1

Si
vF

i, (19)
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where Si
v ≡ [(

∫
Ω

dφ
dxiϕ

TdV )(V−1)T ], Fi ≡ [F i(x1), · · · , F i(xNk+1
)]T , and φ ≡ [φ(1), · · · , φ(Nk)]T .

Here, we call Si
v the DRM stiff matrix with respect to the xi coordinate for the volume

integration. The volume integration is computed after d-times matrix-vector multiplica-
tions between the DRM stiff matrices and the vectors of the flux nodal coefficients. In
practice, all DRM stiff matrices are pre-computed in the pre-processing step, and DQM
points are used as nodal points. The number of point required for the DRM volume
integration is shown in Tab. 5. DRM is proved to be even more efficient than DQM.

Table 5: The numbers of points of DRM for the DG volume integration on two- and three- dimensions(d)
with respect to the orders of DG approximation(k) and element(n). Effective regions are shaded.

d 2 3

k 1 2 3 4 5 6 1 2 3 4 5 6

n

1 6 10 15 21 28 36 10 20 35 56 84 120
2 6 10 15 21 28 36 10 20 35 56 84 120
3 6 10 15 21 28 36 10 20 35 56 84 120
4 6 10 15 21 28 36 10 20 35 56 84 120
5 6 10 15 21 28 36 10 20 35 56 84 120
6 6 10 15 21 28 36 10 20 35 56 84 120

3.2.2 DRM for Surface Integration

The same DRM can be extended into the surface integration. In order to reconstruct
the flux function, we firstly need to find the nodal polynomials in a proper target space.
Because we want to directly handle the integration in the physical domain, our target
space is trivially Pk+1(Ω)|∂Ω. Then the modal basis polynomials can be computed by the
MGS process in the target space. In order to realize that, we define the following inner
product.

(f, g)∂Ω ≡
∫
∂Ω

fgdA

‖|J|(J−1)T ñ‖
, (20)

It is then easy to show that Eq. (20) satisfies the conjugate symmetry, linearity, and
positive-definiteness of an associated inner product space. As an initial set of the MGS
process, the hierarchical monomials of Pk+1(Ω) are used. The linearly dependent mono-
mials can be easily removed by slightly modifying the conventional MGS algorithm. In
addition, we also eliminate the monomials that are too stiff leading to an ill-conditioned
Vandermonde matrix. For two-dimensional case, the cut-off condition number is set to
10 and it gives somewhat adaptive results depending on the curvature of the surface. Let
ϕ ≡ [ϕ(1), · · · , ϕ(Mk+1)]T is a set of the resulting modal bases. If we choose a proper set
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of points, we can derive the Lagrange polynomials such that

L ≡

 `(1)

...
`(Mk+1)

 = V−1

 ϕ(1)

...
ϕ(Mk+1)

 ≡ V−1ϕ, (21)

where V is the Vandermonde matrix. Here, the Gauss-Legendre points were used as the
nodal points in two dimensions by transformation. Thus, the following is achieved.∫

∂Ω

φF̂ · ndA =

∫
∂Ω

φ
d∑

i=1

(F̂i · L)nidA =

∫
∂Ω

φ

d∑
i=1

(F̂i ·V−1ϕ)nidA

=
d∑

i=1

[(∫
∂Ω

φϕTnidA

)
(V−1)T

]
F̂i ≡

d∑
i=1

Si
f F̂

i, (22)

where Si
f ≡ [(

∫
∂Ω
φϕTnidA)(V−1)T ] is the DRM mass matrix with respect to the ni com-

ponent for the surface integration, and F̂i ≡ [F̂ i(q−(x1), q+(x1)), · · · , F̂ i(q−(xMk+1
), q+(xMk+1

))]T

is the i−directional vector of the numerical flux at nodal points. Note that the numerical
flux is defined for each direction, not combined with the normal vector. For the numerical
flux using the contravariant velocity

F̂ · n =
F(q−) + F(q+)

2
· n− A(q−, q+,n), (23)

F̂ i is computed by

F̂ i ≡ F i(q−) + F i(q+)

2
− A(q−, q+,n)ni, (24)

where A(q−, q+,n) is a numerical diffusion. Thus, F̂ · n = F̂ · n. In the DRM approach
for the surface integration, it is difficult to estimate the required number of points with
respect to the order of solution approximation and element, because we do not know
the dimension of Pk+1(Ω)|∂Ω explicitly. One thing clear is that the upperbound is the
dimension of Pk+1(Ω) and this value is tabulated in Tab. 6.

4 Numerical Results

In order to examine the performances of the DQM and DRM methods, the compressible
Euler equations are computed on high-order meshes. Euler advection problem is consid-
ered as an unsteady case, and circular cylinder problem is chosen as a steady case. Both
problems are computed by DG-P3 and -P6 methods on curved P3 - and P6 -elements,
respectively. For the time marching, the 4th-order 5th-stage strong stability preserving
Runge-Kutta (SSPRK) method is used with the CFL number of 0.9. As a numerical flux,
Roe’s FDS is used. For each benchmark problem, conventional quadrature method is used
as baseline test, and four tests were carried out by applying the proposed methods: (1)
DQM and (2) DRM for the volume integration, (3) DQM and (4) DRM for the volume
integration along with DRM for the surface integration. All computations are performed
by Intel Xeon X5650 in serial.
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Table 6: Upper bound of the numbers of points of the DRM for the DG surface integration on two-
and three-dimensions(d) with respect to the orders of DG approximation(k) and element(n). Effective
regions are shaded. Note that the effective regions become wider in actual computations.

d 2 3

k 1 2 3 4 5 6 1 2 3 4 5 6

n

1 6 10 15 21 28 36 10 20 35 56 84 120
2 6 10 15 21 28 36 10 20 35 56 84 120
3 6 10 15 21 28 36 10 20 35 56 84 120
4 6 10 15 21 28 36 10 20 35 56 84 120
5 6 10 15 21 28 36 10 20 35 56 84 120
6 6 10 15 21 28 36 10 20 35 56 84 120

4.1 Advection Problem

Advection equation given by the following initial condition

(ρ, u, v, P ) = (1 + 0.2 sin(2πx) sin(2πy), 1, 0.5, 1) (25)

is computed on the computational domain of [0, 1] × [0, 1] until t = 2.0. The periodic
boundary condition is applied. Cartesian meshes are transformed by

(x, y) 7→ (x, y) + 0.1 cos(π(x− 0.5)) sin(2π(y − 0.5))(1,−1) (26)

to manufacture high-order curved meshes. The coarsest mesh is shown in Fig. 1. Fig. 2
shows the computed results. Here, the length scale is defined by

Length Scale ≡ 1/
d
√

nDOFs. (27)

As shown in Fig. 2, the formal order-of-accuracy is well preserved and there is no dif-
ference among the errors calculated by each method. It is, however, clearly observed
that the proposed methods significantly reduce the computational costs compared with
the conventional method. This is because the number of points for quadrature and/or
flux evaluations is substantially reduced, which is tabulated in Tab. 7. In both DG-P3
and -P6 cases, DRM shows better performance than DQM for the volume integration
because it requires much less number of points. In DG-P3 case, however, DRM for the
surface integration is more expensive than the conventional surface integration, though
the required number of point is still less. This is because additional computational efforts
are required to split the numerical flux into each direction and to gather it during the
multiplication step with the DRM mass matrices for the surface integration. In the case of
DG-P6, DRM for the surface integration outperforms again. This is because the benefits
of the substantially reduced number of points far outweigh the additional computational
costs. Thus, DRM for the surface integration is efficient when higher-order elements are
employed. It is observed that the coarsest results of DQM for the volume integration in
DG-P6 blow up because of numerical instability.
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Figure 1: Manufactured high-order curved mesh in the advection problem.

(a) (b)

Figure 2: Results of the advection problem: L2-error of density with respect to (a) length scale and (b)
computational cost.
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Table 7: The number of points for quadrature and/or flux evaluations required in the advection problem.

Mesh
DG-P3 DG-P6

Volume Surface Volume Surface
Base DQM DRM Base DRM Base DQM DRM Base DRM

4×4 2304 448 240 480 338 28224 1456 576 1680 476
8×8 9216 1792 960 1728 1339 112896 5824 2304 6048 1632

12×12 20736 4032 2160 3744 2881 254016 13104 5184 13104 3380
16×16 36864 7168 3840 6528 4956 451584 23296 9216 22848 5593
20×20 57600 11200 6000 10080 7502 705600 36400 14400 35280 8396

4.2 Circular Cylinder Problem

Owing to flow symmetry, an upper half cylinder with a radius of 1 located at the origin
is considered. The mesh contains 480 curved quadrilateral elements with 16 elements
along the surface of the half cylinder. The computational domain is extended to the
radial direction by stretching the grid size exponentially with a factor of 0.1, and the first
grid line off the wall is set to 0.2. The free stream Mach number is M∞ = 0.1, and the flow
field is initially set to the free stream values everywhere in the domain. For DG-P3 case
on P3 -elements, a converged solution is obtained by up to 50,000 iterations. For DG-P6
case on P6 -elements, the initial flow field is firstly stabilized by DG-P3 approximation
until 5,000 iterations. After that, the intermediate result is lifted onto P6 space, and a
final converged solution is obtained by up to 50,000 iterations with DG-P6 approximation.
At every iteration, the residual defined by

Residual ≡

(∑
i

∫
Ωi
|u(tn+1)− u(tn)|2 dV∑

i |Ωi|

)1/2

(28)

is computed by the conventional quadrature method.
Fig. 3 shows the results of DG-P3 case. All residual curves are almost overlapped into

a single curve, but after about 13,000 iterations, DRM for the volume integration yields
faster convergence regardless of the surface integration method. DQM for the volume
integration also provides better performance than the conventional method. The resid-
ual curves are not affected by the DRM surface integration. All the proposed methods
significantly reduce the computational costs as shown in Fig. 3. DQM and DRM for the
volume integration bring 2.41× and 2.88× speedup, respectively. DRM for the surface
integration provides 2.15× and 2.46× speedup for each volume integration method, in-
dicating that it rather increases the computational cost. This is already observed in the
advection problem, and the reason is the same as before. Converged solutions are plotted
in Fig. 4.

Fig. 5 shows the DG-P6 results. The residual curve of DRM for the volume inte-
gration is overlapped again with the baseline one, but after about 19,000 iterations, the
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(a) (b)

Figure 3: Results of the circular cylinder problem by DG-P3 method: residual of density with respect
to (a) iteration and (b) computational cost.

(a) (b) (c)

(d) (e)

Figure 4: Density contours of converged results of the circular cylinder problem by DG-P3 method:
(a) Baseline, (b) DQM and (c) DRM for the volume integration, (d) DQM and (e) DRM for the volume
integration with DRM for the surface integration.
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(a) (b)

Figure 5: Results of the circular cylinder problem by DG-P6 method: residual of density with respect
to (a) iteration and (b) computational cost.

(a) (b) (c)

Figure 6: Density contours of converged results of the circular cylinder problem by DG-P6 method: (a)
Baseline, (b) DRM for the volume integration and (c) DRM for the volume and surface integration.

DRM residual level is a bit lower. In the case of the DQM volume integration, the resid-
ual diverges after about 19,000 iterations. Numerical instability arises at the elements
containing stagnation point. DRM for the volume integration remarkably reduces the
computational cost. It brings 10.9× speedup, and 12.8× speedup with DRM for the
surface integration. Contrary to DG-P3 case, DRM for the surface integration success-
fully reduces the computational cost. Converged contours are plotted in Fig. 6, and the
number of points for quadrature and/or flux evaluations is shown in Tab. 8.

5 Conclusion

Two novel approaches, called DQM and DRM, are proposed to alleviate the computa-
tional burden of the DG methods on high-order curved elements. From numerical design
to computational experiments for the 2-D compressible Euler equations, both methods
applied to the volume integration and substantially reduce the amount of required com-
putation. As a result, computational efficiency is dramatically improved on high-order
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Table 8: The number of points for quadrature and/or flux evaluations required for each method in the
circular cylinder problem.

DG-P3 DG-P6
Volume Surface Volume Surface

Base DQM DRM Base DRM Base DQM DRM Base DRM

69120 13440 7200 12072 8356 846720 43680 17280 42252 14171

elements such as DG-P6 case. DQM, however, yields somewhat unstable behavior on
DG-P6 with SSPRK. In particular, DRM for higher-order elements turns out to be ac-
curate and efficient in both the volume and surface integration. Both methods will be
continuously extended into 3-D mixed curved elements, and extensive benchmark tests
containing discontinuities will be carried out. As shown in Tabs. 1 and 2, computational
efficiency is expected to be improved much better in 3-D cases.
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Appendix A Points for Quadrilateral Element

DQM and DRM for the volume integration require a set of points, {xj}, that has a
sufficiently small condition number for the Vandermonde matrix given by V(i,j) = ϕ(i)(xj),
where ϕ is a orthonormal basis for a given target space. In the quadrilateral element, the
target space is given by Pm([−1, 1] × [−1, 1]). For m = 1, a set of points yielding a
condition number of unity, which is the minimum possible value, can be found by hand
calculation. In order to find the set of points for higher-order space, we apply a sort of
brute force approach. With a parallel computing program which randomly searches a set
of points that has a well-conditioned Vandermonde matrix, the results are plotted in Fig.
7, after a number of tries of O(109) for P2, and O(1010∼11) for others, respectively.
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(a) P1 (b) P2 (c) P3 (d) P4

(e) P5 (f) P6 (g) P7 (h) P12

Figure 7: The points for a reference quadrilateral element that empirically minimize a condition number
of the Vandermonde matrix.
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