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Abstract. This paper presents the modelling and simulation of cardiac muscles in a rat
biventricular model. Compared with the hugely advanced research on human hearts, the
rat heart remains fairly little discussed so far. However, insights into rat heart function and
heart failure may help to investigate human heart pathology. The biventricular model can
produce a more realistic response of the rat heart compared with a separated left ventricle
model. In this work, the excitation-induced contraction is modelled for the biventricular
model with human heart parameters adapted for the faster heart rate of the rat. The
passive mechanical properties of the model are formulated with an orthotropic exponen-
tial strain-energy function. Moreover, in partially and strongly coupled electromechanical
problems, both excitation-induced contraction and mechano-electrical feedback interact
with each other and this feedback is also able to alter the electrophysiology, which may
mostly occur in diseased hearts, where deformations can be sufficiently high to induce
excitation. Our computational model for the biventricular model is built up based on
a three-dimensional (3D) geometry from magnetic resonance imaging (MRI) and then
developed with an approximated fibre orientation map. The electromechanically coupled
problem of cardiac muscle contractions of the rat heart is subsequently solved using a
fully implicit finite element-based monodomain framework associated with the stress ap-
proach. Our numerical results for a healthy and an infarcted case show the capability of
our electromechanical model to be an essential protocol to investigate rat heart pathology.
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1 INTRODUCTION

Despite largely significant developments in heart pathology, cardiovascular diseases
remain the major causes of human death in the world. In addition, it has been ever
nontrivial to fully access the cardiac electromechanics due to the complexity of cardiac
structure and its mechanics and electrophysiology as well as the challenge in performing
experiments ’in-vivo’. Inspired by these difficulties, computational models are therefore
developed as effective tools for not only gaining deeper insights into the heart function
and heart failure but also testing/designing therapy and especially constructing cardiac
devices [1, 2].

Many studies have first focused on the human left ventricle since it creates the main
pumping force and its functional failure takes place more often and then significantly af-
fects the heart function. However, including the right ventricle in modelling importantly
helps to investigate its roles and certainly results in a more accurate response of the model
[3]. Thus, biventricular models have been paid special attention such as in the following
studies. Since the cardiac mechanics is complicated due to heterogeneity of cardiac muscles
and their orientation distribution as well as contraction behaviour, the passive mechanics
is therefore modelled as anisotropic behaviour such as characterized by the Fung-type
model [4], a transversely isotropic model [5] or by the orthotropic material laws with
and without fibre dispersion [6, 7]. Additionally, based on the fibre-sheet structure of the
myocardium in which the fibres are helically distributed around the longitudinal axis of
the biventricular model, the active stress or excitation contraction formulation can be
modelled along the fibre direction (one-dimentional) [5], the fibre and sheet directions
(two-dimensional) [1] and the fibre, sheet and normal directions (three-dimensional) [8].
The cardiac electrophysiology is widely characterized by the ionic Hodgkin-Huxley model
for neurons [9]. Based on the Hodgkin-Huxley description, the Aliev-Panfilov and the
FitzHugh-Nagumo models are derived and preferably used to simulate nonpacemaker cells
and pacemaker cells in living hearts, respectively [10, 11]. These models are also useful to
study, in particular, atrial and ventricular fibrillation. Unlike the excitation-induced con-
traction, myocytes can also be excited through the stretch-induced opening of ion channels
[12]. Coupled, decoupled and staggered methods can be used to solve the electromechan-
ical problems [1, 5, 13]. In contrast to huge developments in modelling human hearts,
research on rat hearts is relatively narrowed to a certain extent. The electrophysiology
of a rat is modelled by an ionic model associated with transmural heterogeneity [14] and
the impact of fibre orientations on the ventricular electromechanics is presented in [4].
Furthermore, the fibre orientation for rat hearts can be constructed using high-resolution
diffusion tensor imaging [15]. Passive mechanical properties of infarcted rat myocardium
at different time points have been characterized by mechanical tension and compression
tests in [16]. Obviously, there is still lacking in numerical experiments on infarcted hearts.

In this paper, we present a general procedure to formulate and solve partially/strongly
coupled electromechanical problems of cardiac muscles for a rat, which is still undiscussed
in detail for rats and lacks of computational implementation and numerical studies [2, 17].
Fortunately, the cardiac mechanisms of a rat and human are similar, hence, many mathe-
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matical descriptions of the cardiac physiology can be transferred by scaling and adjusting
relevant parameters [18]. Our study explores the effective electromechanical model based
on a biventricular 3D geometry of a rat heart obtained from the Universitätsklinikum
Erlangen-Nuremberg. We also investigate the capability of this model to study the rat
heart pathology (infarcted heart) and its possibility to support designs of cardiac devices.

2 GOVERNING EQUATIONS

2.1 Kinematics

Let us consider a deformable and excitable body Ω0 ⊂ R3 that deforms to the current
configuration Ω ⊂ R3 at t > t0. Material points X ∈ Ω0 move to their spatial positions
x ∈ Ω through the non-linear deformation map x = ϕ(X, t). Thus the deformation

gradient is defined as F = ∂ϕ(X,t)
∂X

= ∇ϕ(X, t) and J = detF > 0 and C = FTF is the
right Cauchy-Green tensor.

2.2 Balance equations and boundary value problem

For electromechanically coupled problems with two primary field variables, placement
ϕ(X, t) and action potential (AP) Φ(X, t), there exist two field equations which govern
the state of the material points X at time t. The mechanical field equation is derived by
the balance of linear momentum as

0 = Div[F · S] + F ϕ in Ω0, (1)

where S is the second Piola-Kirchhoff stress tensor and F ϕ is the external mechanical
body force. The evolution of the transmembrane AP Φ can be written as

Φ̇ = Div[Q] + FΦ in Ω0. (2)

where the non-linear current term is FΦ, whereas Φ̇ denotes the material time derivative
of the action potential field Φ, and Q is the electrical potential flux vector. The Neu-
mann and Dirichlet conditions are Q · N = Q̄ on ΓQ, T = T̄ on ΓT , and ϕ = ϕ̄ on
Γϕ, respectively. Similarly, we have initial conditions Φ(X, 0) = Φ̄ on ΓΦ, see Figure 1.

N

Q̄

Γ0

Ω0

ΓT

Γϕ

ΓΦ

T̄

Q̄
ΓQ

base

Figure 1: Boundary surface
Γ0 = Γϕ ∪ ΓT and Γ0 = ΓΦ ∪ ΓQ.

3 CONSTITUTIVE EQUATIONS

3.1 Mechanical model

In this section, the stress approach is described as it is
divided into a passive and an active part.

S = Spas(ϕ) + Sact(ϕ,Φ) (3)

From the strain-energy function Ψ the associated me-
chanical constitutive equations can be derived as follows

S = 2
∂Ψ

∂C
, and the Cauchy stress σ = X∗(S) = 1

J
F ·S ·FT ,

where X∗(◦) denotes the push-forward of (◦) from its ma-
terial configuration to the spatial one.
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Passive stress response The Holzapfel-Ogden (H-O) model is employed for describ-
ing the passive mechanical response of the incompressible hyperelastic orthotropic my-
ocardium tissue [6]. This model can characterize the fibre-sheet structure with the fibre
direction f0 and the sheet direction s0 and has the form

Ψ = a
2b

exp[b(Ī1 − 3)] +
∑

i=f,s
ai
2bi

{
exp

[
bi(Ī4i − 1)2

]
− 1
}

+
afs
2bfs

[
exp(bfsĪ

2
8fs)− 1

]
,

(4)

where i ∈ {f, s} and the variables a, b, af , bf , as, bs, afs, bfs are material constants. While
all a, af , as, afs parameters have the dimension of stress, all b, bf , bs, bfs are dimensionless.
These quantities are derived from the isochoric deformation gradient C̄ = F̄T F̄, where the
deformation gradient can be split into two parts as F = (J1/3I)F̄ where I is the identity
tensor. Specifically, J1/3I describes purely volumetric deformation whereas F̄ denotes
the purely ischoric deformation (J̄ = det(F̄) = 1). The principal isochoric invariants
of C̄ are defined as Ī1(C̄) = tr(C̄), Ī4f (C̄) = f0 · (C̄f0), Ī4s(C̄) = s0 · (C̄s0), and
Ī8fs(C̄) = f0 · (C̄s0). In addition, the standard and isochoric fibre and sheet direction
vectors in the material are f0, f̄0 = (J−1/3)f0, s0 and s̄0 = (J−1/3)s0, and in the current
configuration, f , f̄ , s and s̄. The passive second Piola-Kirchhoff stress is evaluated as
Spas = Siso + Sani, where

Siso = a exp
[
b(Ī1 − 3)

] (
J−2/3I− 1

3
Ī1C

−1
)

Sani =
∑

i=f,s 2(Ī4i − 1)ai exp
[
bi(Ī4i − 1)2

] (
ī0 ⊗ ī0 − 1

3
Ī4iC

−1
)

+ Ī8fsafs exp
(
bfsĪ

2
8fs

) [(
f̄0 ⊗ s̄0 + s̄0 ⊗ f̄0

)
− 2

3
Ī8fsC

−1
]
.

(5)

Active stress response The cardiac muscle contraction induced by an electrical exci-
tation is described by the active part of the second Piola-Kirchhoff stress tensor Sact or
the Cauchy stress tensor σact. Reaching a certain threshold in the AP, the cell starts to
shrink and initiate the final pumping mechanism of the rat heart. Taking into account
the fibre orientation f0 and the sheet plane direction s0 yields

Sact(C,f0, s0,Φ) = T act(Φ)

[
I−1

4f νfff0 ⊗ f0 + I−1
4s νsss0 ⊗ s0

]
, (6)

where I4f = C : (f0⊗ f0) = λ2, I4s = C : (s0⊗ s0), νff and νss are weighting factors and
the active fibre tension T act is computed from its evolution equation as Ṫ act = T (Φ, T act)
specified in section 6.1.

3.2 Electrophysiological constitutive models

The current source term FΦ is split into two parts as FΦ = FΦ
e (Φ, r) + FΦ

m(ϕ,Φ),
where FΦ

e expresses the purely electrical part and FΦ
m accounts for possible mechanically-

induced excitation (MEF), and r denotes the recovery variable of the cellular excitation
which is later solved internally. The excitation-induced purely electrical part FΦ

e describes
the effective current generation due to the inward and outward flow of ions across the cell
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membrane. This ionic flow is triggered by a perturbation of the resting potential of a
cardiac cell beyond some physical threshold upon the arrival of the depolarization front
[5, 11]. The purely electrical model is written as

FΦ
e = cΦ(Φ − α)(1− Φ)− rΦ + I, (7)

where the variables α and c are material parameters, α controls the oscillation threshold,
c is a scaling parameter, I is an external stimulus and ṙ = f r(Φ, r), see section 6.2.

Mechano-electrical feedback (MEF) The stretch-induced mechano-electrical part
FΦ
m incorporates the opening of ion channels under the action of deformation. This be-

haviour is observed due to stretch-induced opening of ion channels which induces electrical
potential generation. It is described by the constitutive equation for the electrical source
term as FΦ

m = ϑGs (λ− 1) (Φs − Φ), where Gs denotes the maximum conductance, Φs the
resting potential, ϑ = 1 when λ =

√
I4f > 0 and ϑ = 0 otherwise [19].

Potential flux In the case of linear diffusion the electrical flux is proportional to
the current gradient of the electrical field ∇xΦ. When referred to the material con-
figuration, the electrical flux has the form Q = D · ∇Φ with the conductivity tensor
D = DisoC

−1 +Danif0 ⊗ f0, where Diso and Dani are constants.

infarcted

region

Figure 2: Lateral MI
region.

4 INFARCTED RAT MYOCARDIUM

Myocardial infarction (MI) is considered as a major cause of
death. Thrombosis and coronary artery atherosclerosis are the
main causes of MI and precipitate local ischemia and necrosis
of myocardial cells [20]. In this work, we discuss the lateral MI
(transmural infarct) which mostly occurs in the myocardium
due to occlusion of the left circumflex artery. The size and the
position of the infarcted region for our numerical simulations
are illustrated in Figure 2. There is few living cells and the
conductivity of the infarcted region is relatively close to the
zero value which slows down the electrical wave transmission.
Consequently, since most of the cells are dead, the infracted region does not contract and
is found to be stiffer than the healthy region of rat hearts [16]. Furthermore, the volume
during the diastolic phase in an infarcted canine left ventricle is found to be smaller than
the healthy one [21]. Thus, when the cardiac muscles in the infarcted heart loose their
function, less blood is pumped to the body. Herein, we consider the transmural infarct
case in which the thickness of the infarcted region is assumed to be unchanged.

5 FINITE ELEMENT FORMULATION

In this section, a standard finite element procedure is used to approximately solve the
initial and boundary value problem. In the following, to solve the governing equations, we
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first rewrite the nonlinear problem in its weak form and then discretize it with a finite
difference scheme in time and a finite element scheme in space.

5.1 Weak form of electromechanical problem

Following the Galerkin procedure, the residuals RΦ and Rϕ are multiplied with the
scalar- and vector-valued test functions δΦ and δϕ which satisfy δϕ = 0 on Γϕ and
δΦ = 0 on ΓΦ, respectively and integrated over the reference domain to yield

GΦ =

∫
Ω0

δΦΦ̇dV +

∫
Ω0

∇(δΦ) ·QdV −
∫

Ω0

δΦFΦdV −
∫

ΓQ

δΦQ̄da =̇ 0

Gϕ =

∫
Ω0

∇(δϕ) : [F · S] dV −
∫

Ω0

δϕ · F ϕdV −
∫

ΓT

δϕ · T̄da =̇ 0 .

(8)

Herein, the Dirichlet boundary conditions prescribe the state of the respective surface
points to be equal to ϕ̄ and Φ̄ and the Neumann boundary conditions prescribe the
surface traction T̄ and the surface flux term Q̄. These quantities as well as the external
forces F ϕ and current FΦ are all supposed to be given.

5.2 Temporal and spatial discretization

We need to have the temporal discretization, the observation time T = [0, t] of the elec-
tromechanical problem is partitioned into nstep periods [tn, tn+1] of length ∆t = tn+1− tn,
i.e. T =

⋃nstep

n=1 [tn, tn+1] and an implicit Euler scheme with Φ̇ ≈ Φn+1−Φn

∆t
. For the sake of

simplicity, the index ’n + 1’ is suppressed in all equations. The spatial discretization is
implemented by dividing the body Ω0 into nel finite elements Ωh

0,e so that Ω0 ≈ Ωh
0 =⋃nel

e=1 Ωh
0,e. The field variables ϕ and Φ and their test functions δϕ and δΦ can then

be approximated on each element Ωh
0,e with the number of nodes per element nne and

shape functions N i(X) for i = 1 . . . nne as δΦ
h
e =

∑nne

i=1 N
iδΦe

i , δϕ
h
e =

∑nne

j=1N
jδϕej , Φh

e =∑nne

k=1N
kΦe

k, and ϕ
h
e =

∑nne

l=1 N
lϕel . Similarly, explicit forms for the increments for a consis-

tent linearization and the Newton-Raphson scheme are expressed as ∆Φh
e =

∑nne

i=1 N
i∆Φe

i ,
∆ϕhe =

∑nne

j=1N
j∆ϕej , ∇(∆Φh

e ) =
∑nne

k=1∇Nk∆Φe
k, and ∇(∆ϕhe ) =

∑nne

l=1 ∆ϕel ⊗ ∇N l.
The nonlinear boundary value problem in the residual weak form (8) associated with
the boundary flux term Q̄ = 0 can then be reformulated with the temporal and spatial
discretization as

RΦ
I =

∀nel

e=1

{∫
Ωh

0,e

N iΦ − Φn

∆t
dV +

∫
Ωh

0,e

∇N i ·QdV −
∫

Ωh
0,e

N iFΦdV

}
=̇ 0

Rϕ
J =

∀nel

e=1

{∫
Ωh

0,e

∇N j · F · SdV −
∫

Ωh
0,e

N jF ϕdV −
∫

Γe
T

N jT̄dA

}
=̇ 0 ,

(9)

where

∀

represents the assembly operator. All element residuals at the local element
nodes i and j are added to the global residuals at the global nodes I and J . Herein,
i, j = 1, ..., nen and I, J = 1, ..., nnd, where nnd is the number of nodes in the body mesh.
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5.3 Linearisation and iterative solver

In order to solve the discrete non-linear boundary value problem for its nodal field
variables (AP ΦI and deformation ϕJ), a consistent linearisation is required. Specifically,
the resisduals are linearized along the increments ∆Φ and ∆ϕ to yield

RΦ
I +

∑
K KΦΦ

IK∆ΦK +
∑

LK
Φϕ
IL ·∆ϕL =̇ 0

Rϕ
J +

∑
K KϕΦ

JK∆ΦK +
∑

LK
ϕϕ
JL ·∆ϕL =̇ 0

(10)

In (10) the iteration matrices KΦΦ
IK , KΦϕ

IL , K
ϕΦ
JK and Kϕϕ

JL are obtained as

KΦΦ
IK =

∀nel

e=1

∫
Ωh

0,e
∇N i ·D · ∇NkdV +

∫
Ωh

0,e
N i
(

1
∆t
− dΦF

Φ
)
NkdV

KΦϕ
IL =

∀nel

e=1

∫
Ωh

0,e
2
(
N idCF

Φ +∇N idCQ
) (

FT · ∇N l
)sym

dV

KϕΦ
JK =

∀nel

e=1

∫
Ωh

0,e
∇N j · FdΦS

actNkdV

Kϕϕ
JL =

∀nel

e=1

∫
Ωh

0,e
(∇N j · F)

sym
: 2dCS :

(
FT · ∇N l

)sym
dV.

(11)

The operators are [◦]sym = 1
2
([◦] + [◦]T ) and the total derivative d[�](◦) = d(◦)/d[�].

By using the Newton-Raphson methods, an iterative solution scheme updates the global
unknowns ΦI ← ΦI + ∆ΦI and ϕJ ← ϕJ + ∆ϕJ .

6 INTERNAL VARIABLES AND SENSITIVITIES

To complete the iteration matrices, evolution of internal variables and the sensitivities
or partial derivatives must be computed.

6.1 Active stress response

The evolution for the muscle traction is Ṫ act = ε(Φ) [kT (Φ − Φr)− T act] with its sen-
sitivity to the AP ∂Sact

∂Φ
= ∂ΦT

act(Φ)
[
I−1

4f νfff0 ⊗ f0 + I−1
4s νsss0 ⊗ s0

]
, where kT speci-

fies the saturated value of T act(Φ), Φr is the resting potential where no new tension is
evoked (for cardiac cells usually around -80mV), and ε(Φ) represents the switch func-

tion as ε(Φ) = ε0 + (ε∞ − ε0) exp
[
− exp

(
−ξ
(

Φ − Φ̃
))]

. The special behaviour can be

adjusted by the parameters ε0 and ε∞ which regulate the limitation values Φ̃ denot-
ing the phase shift and ξ controlling the transition rate from ε0 to ε∞, see [22]. The
impact of the active fibre tension on the active stress along the fibre direction and in
sheet direction are controlled by νff and νss, respectively. T

act can be treated as an in-
ternal variable and has to be solved internally. The temporal discretization of the time

derivative reads Ṫ act ≈ Tact−Tact
n

∆t
. Here, T act denotes the active fibre tension at time

tn+1, while T actn is the active fibre tension at tn. By these specifications, the residual
RT = T act − T actn − ∆t ε(Φ) [kT (Φ − Φr)− T act] =̇ 0 has to vanish. The sensitivities of
the potential flux and the second Piola-Kirchhoff stress tensor with respect to the defor-
mation can be found as dCQ = {Diso

1
2
[C−1⊗̄C−1] +DaniI

−2
4f (f0 ⊗ f0)⊗ (f0 ⊗ f0)} · ∇Φ.
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The constitutive tensor can be computed in a straightforward way as dCS = ∂S
∂C

= 2 ∂
2Ψ
∂C2 .

For conciseness, we do not explicitly write its form here.

6.2 Electrophysiological model

The recovery variable r is governed by the local ordinary differential equation as

ṙ = f r =

[
γ +

µ1r

µ2 + Φ

]
[−r − cΦ(Φ − β − 1)] (12)

0 20 40 60 80 100
t̄ [ms]

0.00

0.25

0.50

0.75

1.00

1.25

φ
,

0.
5r

[-
,-

]

φ

0.5r

Figure 3: Evolution of normalized AP φ and
recovery variable 0.5r over normalized time t̄

with α = 0.01, γ = 0.002, β = 0.55, c = 8,
µ1 = 0.2 and µ2 = 0.3, and a stimulus I = 30

at t̄ = 30 to trigger cardiac cell.

The time derivative ṙ denotes the change in
the recovery variable r and the variables µ1,
µ2, β and γ are additional material parame-
ters. While the coefficient term [γ + µ1r

µ2+Φ
] is

a weighting factor, β controls the AP dura-
tion. Considering the boundary value problem
(8), r can be treated as an internal variable.
In order to solve the internal evolution equa-
tion (12), the implicit Euler method is used.
Hence, the residual can be introduced as Rr =
r − rn − ∆tf r(Φ, r) =̇0 with the sensitivity

∂rR
r = 1+∆t

[
γ + µ1

µ2+Φ
[2r + cΦ(Φ − β − 1)]

]
.

The term dΦF
Φ is written as dΦF

Φ(C,Φ, r) =

dΦF
Φ
e + dΦF

Φ
m = ∂FΦ

e

∂Φ
+ ∂FΦ

e

∂r
dr
dΦ

+ dFΦ
m

dΦ
.

As Rr = 0 is consistently fulfilled throughout the whole equation system, dφR
r =

∂ΦR
r+∂rR

rdΦr =̇ 0 has to hold. Thus, dΦr can be obtained as dΦr = −(∂rR
r)−1∂ΦR

r with

∂ΦR
r evaluated as ∂ΦR

r = ∆t
[[
γ + µ1r

µ2+Φ

]
c (2Φ − β − 1)− µ1r

(µ2+Φ)2
[r + cΦ(Φ − β − 1)]

]
.

0 0.1 0.2 0.3 0.4 0.5 0.6
0
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Figure 4: Fitted parameters for simple shear
data modified for rat heart.

In Figure 3, the AP evolution of a cardiac cell
continuum is displayed alongside the recovery
variable against time. Here, the normalized gov-
erning equation for the AP is iteratively solved
using an implicit Euler scheme with Netwon-
Raphson method. To trigger the AP excitation,
a stimulus I is required as the model is not self-
oscillating. In Figure 3, the AP then increases
suddenly and steep in the depolarization phase.
After reaching its maximum value of 1.0 and
the plateau period (around the absolute refrac-
tory period), the repolarization follows and it
smoothly returns to its resting potential. We
adapt this model for rat hearts with new pa-
rameters given in the caption of Figure 3. The
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tangent terms of the mechano-electrical feedback FΦ
m with respect to AP and deformation,

respectively read ∂ΦF
Φ
m = −ϑGs (λ− 1) and dCF

Φ = 1
2
ϑGs (Φs − Φ)λ−1f0 ⊗ f0.

7 NUMERICAL RESULTS

Material parameters In this section, numerical simulations of the biventricular model
of a rat are presented to demonstrate the capability of the current computational model.
Therefore, parameters for the whole model need to be estimated and adapted by our
parameter study such that the characteristics of electromechanics of the faster than human
heart rate can be represented. Firstly, the material parameters for the passive mechanics of
the rat are obtained by curve fitting to experimental porcine data in [23], which were scaled
down with a factor of 0.8, see Figure 4. This factor is roughly computed by comparing the
scaled data with experimental data for rats in biaxial mechanical tests in [16]. Similarly,
material coefficients for the infarcted region can be obtained by the same fitting procedure
with an assumed factor of 2.5 due to the fact that this region is stiffer since it lacks of fresh
blood and oxygen. Secondly, the parameters for the electrical model and active mechanical
model are obtained by our parameter study and originate also partially from the work for
healthy human hearts in [1, 5]. All parameters are tabulated in Table 1. Finally, the fibre
orientation map of the biventricular model, which is crucially attributing to the mechanics
and electrical conduction system, is approximately calculated for the whole domain by
linearly interpolating the local fibre angle on the endocardium (+60◦) to the local fibre
angle on the epicardium (−60◦) through the wall thickness [24].

Table 1: Material parameters for simulation of cardiac muscles of rat.

passive a = 0.239 kPa, b = 9.683, af = 15.282 kPa, bf = 15.277, as = 2.815 kPa
healthy bs = 6.553, afs = 0.312kPa, bfs = 11.391, κ=104 kPa
passive a = 0.767 kPa, b = 9.506, af = 48.631 kPa, bf = 14.669, as = 8.286 kPa
infarcted bs = 7.658, afs = 1.004 kPa, bfs = 11.248, κ=104 kPa

active kT = 0.49kPa mV−1, Φr = -80mV, νff = 1.0, νss = 0.1

switch ε0 = 0.1mV−1, ε∞ = 1.0mV−1, ξ = 1.0mV−1,Φ̃ = 0mV

conduction Diso = 0.1mm2ms−1, Dani = 0.3mm2ms−1

excitation α = 0.01 , β = 0.55, c = 8, γ = 0.002, µ1 = 0.2, µ2 = 0.3, Gs = 10, φs = 0.6

conversion βφ = 100mV, δφ = 80mV, βt = 12.9ms

Simulation of myocardium To obtain the cardiac muscle contraction, the base plane
is pinned on Γϕ, see Figure 1. However, in reality, the base plane might be slightly dis-
placed or twisted due to its interaction with surrounding tissues and its fibre direction
contractions [2]. As seen in Figure 5, to trigger the myocardial excitation, several nodes
(in red) on the endocardium close to the apex A (in green) are stimulated with a suf-
ficiently high AP (-20mV). Figure 5 shows the simulations of the healthy and infarcted
models using the initial and boundary conditions given above, and the position of MI is
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Figure 5: AP over time; depolarization and repolarization starting from apex A: healthy myorcardium
(1st row) and infarcted myorcardium with delayed and complicated distribution of AP (2nd row).

illustrated in Figure 2. For both cases, the depolarization starts from the apex at t = 2ms
and runs to the base. At t = 41ms, both models are excited at the peak of potential
(+20mV) and start repolarization from the stimulated region near the apex at about
t = 105ms. However, for the healthy case, at t = 13ms the whole myocardium becomes
evenly excited while the infarcted region is still at the resting potential. The myocytes in
the infarcted region cannot conduct the electrical wave. Thus, this region is excited with
a delay and shows a decreased contraction. For the time points t = 41, 105 and 120ms
there are obviously significant differences in AP between the two cases. Consequently, a
key effect of MI can also be seen in Figure 6, the infarcted region causes a smaller apex-to-
base displacement. Obviously, the infarcted region affects the heart function and the heart
muscles must contract faster and stronger to compensate the inactivated myocytes in the
infarcted region in order to keep up with the same blood volume pumped through the body.
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Figure 6: Evolution of AP Φ and displacement
magnitude u of apical node A in healthy and

infarcted models.

8 CONCLUSIONS

We present an electromechanical
model for rat hearts and demonstrate
an effective protocol to solve the par-
tial/fully coupled problems to investi-
gate healthy and diseased rat hearts.
Our model can be used to study in-
sights into physiology and pathology of
the rat heart. Especially, the MEF is im-
plemented and can be employed to inves-
tigate what affects physiology as well as
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atrial and ventricular fibrillation. In the future, the model will be validated with ongoing
experiments on rats to achieve more accurate response of the rat ventricular electrome-
chanics. Furthermore, we plan to improve the model and take into account the hetero-
geneity of the myocardium as well as contribution of the Purkinje network in order to
achieve more realistic behaviour of the heart.
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