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Abstract. The sensitivity to imperfections of sti�ened shells will be evaluated using
the perturbation energy concept introduced in [3]. The concept, which is among others
described in [5] for a mixed formulation, cannot be used with common displacement
based �nite elements because the identi�cation of critical states requires a free variation of
stresses in the elastic potential. Whereas it is shown that the perturbation energy concept
is transferable to a mixed-hybrid formulation and thus can be used in conjunction with
elements, which contain only displacement and rotational degrees of freedom on system
level. For modelling sti�ened structures mixed-hybrid elements provide the advantage that
discontinuities of stresses can be depicted because of their local de�nition. Furthermore
balanced shape functions are used to avoid shear and membrane locking. All global
degrees of freedom are approximated using bilinear shape functions. Due to the provision
of non-linear terms in the kinematic equations, the geometric non-linear behaviour is
considered by a theory of moderate rotations. On this basis critical perturbations, which
cause a snap through of the ideal structure from a stable pre-buckling to an unstable
post-buckling state, are calculated. Subsequently the in�uence of sti�eners on critical
perturbation shapes is studied for sti�ened cylindrical shells.

1 INTRODUCTION

Due to their complex buckling behaviour shell structures have been a subject of exper-
imental and theoretical exploration for decades. Therefore many publications concerning
stability of thin shell structures are available in the literature. Because of the signi�-
cant in�uence on the load bearing capacity, geometrical and physical imperfections are
of particular interest. Since the distribution of imperfections of real shell structures is
unknown in general and in most civil engineering applications it is not possible or at least
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not economically viable to determine all imperfections, the Eurocode as major European
standard speci�cation in civil engineering de�nes tolerance quality classes on the basis
of a limited number of measurable imperfections. Thereby the semi-empirical concept
allows a buckling analysis under consideration of imperfections without any numerical
treatment. Of course this approach contains an appropriate safety against collapse and
might be too uneconomical for certain applications. Thus, the Eurocode also proposes
di�erent approaches using numerical analysis in which equivalent geometrical imperfec-
tions are directly part of a FEM model or their in�uence is estimated by an appropriate
reduction factor in conjunction with calculations using a perfect model geometry. Ma-
terial imperfections e.g. residual stresses or inhomogeneities are also considered by the
equivalent geometrical imperfection. However all concepts are based on a classi�cation of
the shell quality regarding measurable geometrical imperfections.

Since sti�ened shells are widely used in mechanical and civil engineering, these type of
structures has also been research objects for many years. A collection of conducted theo-
retical and experimental studies on sti�ened shells can be found in [11]. In comparison to
unsti�ened shells the complexity of buckling phenomenons increases considerably. As the
Eurocode does not contain rules for sti�ened shells at least the ECCS-Recommendations
[9] o�er approaches for particular cases. The design suggestions are partly based on the
concepts for unsti�ened shells and buckling of plates and widely intersect with the Eu-
rocode. Though theoretical studies on buckling of sti�ened shells are considered, e.g.
[2] and [12]. Anyway the common opinion among experts is, that due to the advanced
development of �nite element programs and available computational capacity, guidelines
for numerical analysis are more meaningful than design concepts based on manual calcu-
lations [10]. Therefore the problem of identifying a reasonable geometrical imperfection,
which leads to the greatest decrease in the buckling load of the ideal structure, is even
more encountered for sti�ened shells.

The perturbation energy concept as described by DINKLER [3] was used by various au-
thors in conjunction with mixed �nite elements. Within the concept a non-linear eigen-
value analysis is used to �nd critical perturbations for a given pre-buckling state. Once
the perturbation shape is identi�ed the associated deformation energy describes the im-
perfection sensitivity as a scalar value. Since this value is dedicated to the analysed shell
geometry it has to be normalised to express a general buckling criterion. Given that the
perturbation is dominated by bending energy a normalisation can be performed using the
bending sti�ness of the shell [4].

Without special considerations the analysis of branched structures with mixed �nite
elements is not readily possible because of discontinuities in the stress gradients. To
enable an analysis of sti�ened shells, the perturbation energy concept is adopted to a
mixed-hybrid formulation. Other advantages are avoidance of locking and lower numerical
costs through balanced shape functions and less degrees of freedom respectively.

2 MIXED-HYBRID FINITE ELEMENT FORMULATION

The basis for the used �nite element formulation is a non-linear shell theory of moderate
rotations. Applying the Kirchho�-Love theory leads to a description of the strain state
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using the three displacements of the shell mid-surface u1, u2 and u3. In conjunction with
neglecting the non-linear parts of the strain gradient in through-thickness direction a �rst-
approximation theory is developed. The relations for the membrane and bending strains
ααβ and καβ using symmetric tensor components apply to

ααβ =
1

2
(uα|β + uβ|α − 2u3bαβ) +

1

2

(
−u3,α−bλαuλ

) (
−u3,β −bρβuρ

)
, (1)

καβ =
1

2
(wα|β + wβ|α) . (2)

A geometrical non-linearity is only considered in the membrane strains of equation 1.
Using the principle of minimum complementary energy a mixed-hybrid �nite element can
be developed. By introducing an inter element boundary on which only displacements
are de�ned equilibrium constraints are relaxed while continuity requirements for displace-
ments are maintained [8]. For the stated assumptions this leads to the following functional
describing the boundary value problem of thin elastic shells

Π = {
∫
Ae

(
nαβαβα +mαβ|ακβα −

1

2

(
nαβFD

αβρλn
ρλ +mαβFB

αβρλm
ρλ
))√

a dΘ1 dΘ2 (3)

−
∫
Ae

p̄iui
√
a dΘ1 dΘ2 −

∫
Se

(
m(τ)w(τ) −m(ν)ϕ̃(ν)

)
dS −

∫
SeS

(
n̄iui + m̄(ν)ϕ̃(ν)

)
dS}

Note that indices in parentheses denote physical components and that ϕ̃(ν) is the only
variable which is merely de�ned on the inter element boundary resulting from the mixed-
hybrid concept. After substituting equations 1 and 2 into 3 and by describing the tangen-
tial and normal moments as well as the normal rotation of the element boundary using
the corresponding tangential and normal vectors τ and ν with [1]

w(τ) = ταwα, m(ν) = mαβνανβ, m(τ) = −mαβνατβ (4)

only nαβ and mαβ as well as uα, u3 and ϕ̃(ν) remain as unknowns. Through a trans-
formation of the functional into an incremental form ∆Π using a taylor series and the
condition of a vanishing variation

δ∆Π = 0, (5)

a non-linear system of equations is obtained describing the problem in a mixed form.
Since equation 3 contains only derivatives of �rst order the isoparametric concept with
quadrilateral elements can be used. Therefore unknown displacement and rotations are
approximated using linear shape functions. To avoid the widely known phenomenons of
shear and membrane locking for plane stress states and curved elements respectively the
normal stresses are described with balanced shape functions as suggested by PIAN et al.
[7]. Excluding boundary forces this leads to[

A(z0) + ANL

(
1

2
∆z

)]
∆z−∆p = 0 (6)
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with

zT = [ui, ϕ̃(ν),n
αβ,mαβ], pT = [p̄i,0, ᾱαβ, β̄

αβ
].

By linearisation of equation 6 in the framework of the Newton-Raphson method and
static condensation of the stress DOF the mixed-hybrid element sti�ness matrix is ob-
tained. In a mixed functional ϕ̃(ν) is absent since continuity requirements are hold by the
conjugated stresses as global DOF satisfying the essential boundary condition.

3 PERTURBATION ENERGY CONCEPT

To point out the changes in the perturbation energy concept that result from the
application of the described mixed-hybrid formulation, the mixed form of the concept will
be brie�y introduced.

Figure 1 shows a load displacement path of an ideal axially compressed cylinder with
a bifurcation point B. If a perturbation pp is applied simultaneously with the axial load,
point B transforms into a stateM where the structure snaps through. This state is called
critical state and the deformation energy of pp perturbation energy. The main objective
is to identify a perturbation associated with the minimum of deformation energy which
is necessary to transform a stable pre-buckling state F , called basic state, of an ideal but
imperfection sensitive structure into a critical state M .

-u2

-∆u2

p

pF

pp

F

M

N

B
-u2

Figure 1: Load displacement behaviour of an axially compressed cylinder [5]

As already mentioned the perturbation energy of a speci�c structure, denoted by Πp,
depends on geometry and material parameters. To allow a general quanti�cation of the
imperfection sensitivity, the energy is normalized by the bending sti�ness [4]

B =
Et3

12 (1− ν2)
, (7)

resulting in the dimension less quantity

πp =
Πp

B
. (8)
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3.1 Identi�cation of critical states using mixed elements

A critical state is de�ned by a vanishing second variation of the incremental functional
∆Π. This is equivalent to a vanishing tangent sti�ness and leads, under the assumption
ofM as snap through point and zF as basic state, to the non-linear eigenvalue problem [5][

A(zF ) + λANL(Φ)
]
Φ = 0 (9)

with

∆zM = λΦ. (10)

With the critical state ∆zM the perturbation energy with respect to the basic state F
follows from the incremental form of the elastic potential

Πm
p = ∆zTM

[
1
2
A (zF ) + 1

6
ANL (∆zM)

]
∆zM . (11)

The solution of equation 9 can be obtained iteratively by evaluating ANL(Φ) with a
user speci�ed initial eigenvector and usage of appropriate algorithms for linear eigenvalue
problems. An important issue is that the eigenvector generally has to be normalised in
every iteration loop. Otherwise the solution will not necessarily converge to the per-
turbation associated with the minimum of deformation energy. It can be shown that if
the inverse vector iteration method is used, the normalisation rule, which is part of the
method, leads to an eigenvalue that is directly associated with the deformation energy by

Πm
p =

1

3
λ3m. (12)

The index m denotes that this relation is valid for the mixed formulation. By virtue
of equation 12 it is obvious that the smallest eigenvalue is related to the minimum of
perturbation energy.

3.2 Application to mixed-hybrid elements

The eigenvalue problem for the mixed-hybrid formulation simply results from the mixed
form with a static condensation of the stress DOF. With the vectors zF and Φ separated
into displacement and stress parts equation 9 yields[

K0 (vF , sF ) + λK1 (vF ,Φv,Φs) + λ2K2 (Φv ·Φv)
]
Φv = 0. (13)

In contrast to the mixed form the condensation leads to an quadratic eigenvalue prob-
lem. The perturbation energy follows from

Πh
p = ∆vTM

[
1

2
K0 (vF , sF ) +

1

6
K1 (vF ,∆vM ,∆sM)− 1

6
K2 (∆vM ·∆vM)

]
∆vM . (14)

Essential for an application of the perturbation energy concept to the mixed-hybrid
form is the normalisation in every iteration loop. By ensuring

ΦT
v

[
1

2
K0 (vF , sF ) + λh

1

6
K1 (vF , Φv, Φs)− λ2h

1

6
K2 (Φv ·Φv)

]
Φv = 1.0 (15)

the perturbation energy is again associated to the smallest eigenvalue with

Πh
p = λ2h. (16)
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4 NUMERICAL RESULTS

4.1 Veri�cation of the mixed-hybrid formulation

To verify the mixed-hybrid approach the arc depicted in �gure 2 is calculated using 20
elements (l denotes the length in meridional direction). The material constants are given
with E = 1, 035 ·106 N/cm2 and ν = 0. Comparative results for mixed elements are taken
from [6].

R = 2540 cm l = 2.54 cm t = 5.08 cm h = 38.59 cm θ = 10◦

Figure 2: Arc under concentrated load

Figure 3 depict the load-displacement path and the perturbation energy respectively.
It is shown that both approaches are identical and the mixed-hybrid formulation is able
to identify critical states. A classical displacement based formulation fails at this point,
because the free variation of stresses as for mixed or mixed-hybrid elements is mandatory
to express a possible perturbation of the kinematic relations.
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Figure 3: Load-displacement path and perturbation energy for mixed and mixed-hybrid formulation

4.2 Meridional sti�ened cylindrical shell

To study the imperfection sensitivity of sti�ened shells the perturbation energy for a
set of stringer sti�ened cylinders is calculated. The geometry and material speci�cations
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are listed in Figure 4 (l denotes the meridional length of the cylinder) and are identical
for all analysed shells. Only the number of sti�eners is varied.

R = 150 mm

l = 150 mm

t = 1.0 mm

hst = 7.5 mm

tst = 2.0 mm

E = 206000 N/mm2

ν = 0.3

Figure 4: Geometry of sti�ener and shell panel

Figure 5 shows the results for 48, 10, 8 and 6 sti�eners which corresponds to angles
of 7.5◦, 36◦, 45◦ and 60◦ between two sti�eners. The applied load is normalized by the
buckling load pcr which is dedicated to the �rst bifurcation point. It can be seen that the
slope of the paths decrease as the shell gets more sti�ened. For relatively large angles the
change in perturbation energy for a speci�c load level is small but still observable while
there is a large increase for the cylinder with closely spaced sti�eners. This is equivalent
to a reduced sensitivity to imperfections. As the typical perturbation shape known from
unsti�ened cylinders shows a single bulge near the loaded boundary which fades out in
circumferential direction (see [4]), the in�uence of the sti�eners vanish if the spacing is too
large. Figure 6 show the shape denoted by ∆zM in equation 10 for sti�ener spacings of
60◦, 18◦ and 7.5◦ and p/pcr ≈ 0.9. As the deformation pattern is marginal e�ected in the
�rst case, in the second one torsional deformation of the sti�eners is more pronounced.
Yet radial deformation is still small at the sti�ener locations. Whereas in the last case it
is clearly visible that the critical shape includes excessive bending of the sti�eners.

A direct comparison with critical loads de�ned through the ECCS-Recommendation [9]
is not possible for linear elastic material models. The design process combines the concepts
for unsti�ened shells and for the buckling of plates. Therefore critical stresses are always
dependent on the yield stress of the material. For this purpose further calculations under
consideration of plasticity have to be carried out.

5 CONCLUSION

The perturbation energy concept, as shown in [3] for a mixed �nite element formulation,
is applicable to a mixed-hybrid formulation. The major di�erence lies in the generalised
eigenvalue problem which transforms into a quadratic one due to static condensation of
the stress DOF. Beside an appropriate solution algorithm, this requires a di�erent normal-
isation to ensure that the smallest eigenvalue corresponds to the minimum of perturbation
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Figure 5: Perturbation energy for di�erent cylinders

Figure 6: Perturbation shapes for sti�ened cylinders at p ≈ 0.9 · pcr

energy. It is shown that both approaches are equivalent for simple geometries. The bene�t
of using mixed-hybrid elements is, that branched structures like sti�ened shells can be eas-
ily analysed. An additional advantage is the general behaviour of mixed-hybrid elements
which avoid locking through balanced shape functions and generate less computational
costs since the dimension of the global system of equations reduces. However a lineari-
sation in order to solve the quadratic eigenvalue problem doubles the matrix dimensions
which oppose the comparatively small system of equations resulting from mixed-hybrid
elements. Furthermore an increased occurrence of complex eigenvalues, which are without
physical meaning in terms of the perturbation energy concept, may arise. Therefore it
can be necessary to compute several eigenvalues till the smallest real one is found.

The application of meridional sti�eners to cylindrical shells reduces the sensitivity to
imperfections in general. When the spacing is small enough, so that the perturbation
shape include considerably radial displacements of the sti�eners, a distinct increase of the
perturbation energy is noticed.
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