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Abstract. Turboprop aircraft are fuel efficient on short and medium range flights but their noise

emissions are higher than future aviation targets and standards. The flow solver HMB3 is used

here to analyse the sound field of a full-scale twin-engined turboprop to assess the quietest

installation layout. The eight-bladed IMPACTA propeller is used in this research and cruise op-

erating conditions are assumed. Overall sound pressure levels on the fuselage exterior surface

are evaluated directly from the CFD solution. Cabin noise is also estimated through experimen-

tally obtained transfer functions.

The employed method showed marked differences among the various installation options, cap-

turing the complex acoustic field generated by the propellers and underlying the need of sim-

ulating the whole airframe for accurate predictions. Synchrophasing on a co-rotating propeller

aircraft appears to be acoustically beneficial, especially regarding the interior sound, but the

noise reduction provided by a counter-rotating layout with inboard-down direction is larger.

The inboard-up rotational direction shows louder sound because of inflow conditions and the

occurrence of constructive acoustic interferences between the sound of the two propellers and

those generated by the airframe.

1 INTRODUCTION

1.1 Motivation and Objectives

Up to 95% of the total air traffic on European routes are short and medium range flights.

Having a considerably higher propulsive efficiency in comparison to a similar capacity jet air-

craft, propeller-driven aircraft are the best option for reducing fuel burnt. However, current
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turboprops still show an interior noise around 25 dB louder, on average, than a turbofan air-

craft and, because of the several tone components forming the propeller sound spectra, they are

perceived by passengers as more annoying. In addition, future environmental certifications will

also require a cut in the aircraft acoustic emissions[1, 2]. Therefore, in line with the challenge of

improving turboprops acoustics (without a high performance penalty) this work compares var-

ious propeller installation layouts aiming to find the quietest option. Co-rotating and counter-

rotating propellers are considered: the first layout usually preferred for civil aircraft because of

lower maintenance costs and easier logistics, the latter encountered in military aircraft because

of the natural balance of roll and yaw moments and of the P-factor. Synchrophasing is also

investigated for the co-rotating option as it had previously proven effective in reducing both

vibration and noise levels. The objective of the present research is not to estimate the absolute

noise levels of each propeller installation layout, but to perform a relative study to assess if one

configuration is acoustically advantageous with respect to the others.

1.2 Past and Current Work

Installed propellers were initially studied in the eighties and nineties when high oil prices

made them an attractive alternative to the wider employed turbojets. Both aerodynamics and

acoustics were investigated, linked to the aircraft sale and usage costs. Major projects were

carried out, experimentally and numerically, in the USA and Europe. Among these we recall

the PTA project[3, 4, 5, 6, 7, 8] of NASA, GEMINI II[9, 10, 11] and APIAN[12, 13] of the

European Commission and the research activities of FAA and SAAB[14, 15, 16, 17, 18, 19].

Relevant findings for this research are: (i) propeller and airframe are subjected to an un-

steady mutual interaction, so 3D time marching simulations are needed to accurately capture

the phenomena[9, 10, 11, 12, 13]; (ii) to acceptably predict noise levels, airframe reflections,

scattering and boundary layer refraction need to be accounted for, and thus a direct noise com-

putation, as it naturally accounts for these non-linear effects, can be a “viable and reliable”

near-field noise technique[8]; (iii) the cabin noise is mainly affected by the first three propeller

harmonics[19]. Nowadays, CFD techniques are often employed to study the near-field acoustics

of installed propellers (see e.g. [20, 21, 22, 23]), analysing a propeller-engine-wing combina-

tion.

Studies on synchrophasing also started in the eighties. Analytical and experimental investiga-

tions using monopole/dipole sources and a cylindrical shell[24, 25] showed that: (i) the pro-

peller phase angles do not affect so much the external pressure field but alter the internal cabin

pressure that is directly coupled with structural vibration modes of the fuselage; (ii) the majority

of the acoustic energy gets into the fuselage over a length of one shell diameter, going in and out

in localized areas with positions strongly dependent on the propeller phase shift. Results of an

analytical technique combining propellers signatures in the frequency domain applied to flight-

test data proved that synchrophasing is able to lower the average interior sound levels by up to 8

dB in four-engined aircraft and by 1.5 dB in twin-engined[26, 27]. The optimum synchrophase

angle is found, in the above works, to depend on cabin location, sound frequency and fuselage

layout, and, in recent research[28], to also change with flight and environmental conditions.

Hence, the choice of the synchrophase angle is a compromise and configuration-dependent, and

ideally the synchrophaser should be adaptive (for investigations on adaptive synchrophasing
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controllers see for example [29, 30, 31, 32, 33, 34]). Nevertheless usually the synchrophase

angles are set a priori via a preliminary optimisation study which is still performed using the

propeller signature theory with experimental data[35, 36], assuming that the contributions of

the propellers are combined in a linear way. This appears a reasonable assumption but it is not

well proven.

This work, in contrast, considers a whole twin-engined turboprop aircraft and uses CFD to

investigate the complex acoustic near-field that is generated by the direct sound fields of the

two propellers and the interactions between each other and with the airframe. The characteris-

tics of the external pressure field, for the different propeller installation layouts considered, are

analysed directly from the CFD solutions aiming to identify the noise source mechanisms that

develop in each case. The interior noise is also evaluated, via transfer functions, to assess if,

and how, the various options modify the cabin sound perceived by passengers. In this way, the

overall acoustics of the different installation strategies is evaluated.

2 COMPUTATIONAL METHODS

2.1 The CFD Solver HMB3

The computations were performed with the in-house parallel CFD solver Helicopter Multi

Block (HMB3)[37, 38, 39] of the University of Glasgow. HMB3 solves the 3D Navier-Stokes

equations in dimensionless integral form using the Arbitrary Lagrangian Eulerian formula-

tion for time-dependent domains with moving boundaries, discretised via a cell-centered finite

volume approach on a curvilinear co-ordinate system. Convective fluxes are treated with Os-

her’s upwind scheme[40] and the viscous stress tensor is approximated using the Boussinesq

hypothesis[41] or an explicit algebraic Reynolds stress model[42]. Several turbulence models,

of the URANS and hybrid LES/URANS families, are implemented in the solver. The MUSCL

variable extrapolation method[43] is employed, in combination with the van Albada limiter[44],

to provide second-order accuracy and avoid spurious oscillations across shock waves. The

temporal integration is performed with an implicit dual-time method and the linear system is

solved using the generalized conjugate gradient method with a BILU[45] factorization as a

pre-conditioner.

Solver Validation HMB3 showed accurate predictions for the flow around the propeller blades,

the aerodynamic phenomena due to the propeller-airframe interaction and the acoustic near-field

dominant tones. Comparison of the HMB3 numerical results against experimental data are pre-

sented in [46] and [47] for an isolated and an installed configurations, respectively.

2.2 Noise Estimation Approach

External Noise The near-field noise is directly estimated from the CFD solution. The time

history of the pressure field p(x, t) is extracted from the flow-field at different time steps or

recorded by numerical probes at points of interest in the case of unsteady computations.

The Overall Sound Pressure Level (OSPL) and the Sound Pressure Level (SPL) as function of
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the sound frequency are computed as follows:
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where p′(x, t) is the unsteady pressure field, rms stands for root mean square, PSD is the

power spectral density and pref is the acoustic reference pressure which is equal to 2 · 10−5 Pa.

Internal Noise The interior noise is evaluated via experimentally obtained Transfer Functions[48]

(TF) that take into account the aircraft structural response without the need of a computationally

expensive structural model (a stronger coupling between aeroacoustics and structural vibrations

is beyond the scope of the analysis at this stage). Data recorded from the numerical probes on

the aircraft fuselage are used as input. The passenger considered in this analysis is located on

the starboard side of the airplane, slightly ahead of the propeller rotational plane on the second

seat from the window, which is one of the areas with higher noise levels in the case of standard

co-rotating layouts. For a more detailed description of the TF determination and their applica-

tion please refer to [47]. It is noted that the TF are used to compare the interior acoustics of

the different propeller designs or installation layouts, without any intention to estimate absolute

noise levels.

3 NUMERICAL SETUP

3.1 Test Cases

The propeller employed in this study is the Baseline design of the eight-bladed IMPACTA

propeller[47]. It is a new-generation propeller, designed with an extremely low activity factor

and operating at high blade loading conditions. Geometric parameters and flight cruise condi-

tions are reported in Table 1. In this work a cruise flight is considered, being usually the longer

segment of the aircraft route where propellers are the major noise source. Results can differ in

climb because of the different propeller operating conditions.

A twin-engined turboprop with a generic shape representative of a 70-80 passenger standard

commercial high-wing design, similar to the ATR72 or the Bombardier Dash 8, was considered

(see Figure 1(a)). No geometry simplifications are introduced apart from the lack of the tail that

is not altering the cabin noise.

Table 1: IMPACTA Baseline propeller parameters and nominal cruise operating conditions.

Radius R 2.21 m Free-stream Mach number M∞ 0.5

Root chord c 0.213 m Thrust line incidence -2 deg

Pitch angle (0.7R) ∼51◦ Helical Mach number (0.95R) 0.789

Angular velocity ∼850 RPM Tip Reynolds number ReTIP 1.24e06

Required Thrust 7852 N Altitude 7620 m
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(a) Computational geometry with dimensions as

function of the propeller radius R.

(b) Frontal view: definition of (i) synchrophase angle (starboard blades at

the reference position, i.e. ψs = 0 deg, shown in grey, blades shifted

by a positive synchrophased angle in orange), (ii) fuselage azimuthal

coordinate θ, and (iii) reference blade azimuthal coordinate ψb (in-

creasing with the propeller rotation, regardless of the direction).

Figure 1: Turboprop computational geometry (at the initial instant of the simulation) with sys-

tem of reference definitions.

The following propeller installation options were analysed[49, 50]:

(a) Co-rotating propellers (CO) - conventional layout for civil aircraft, because of mainte-

nance costs and logistical reasons, with both propellers rotating clockwise as viewed

from the rear;

(a1) Synchrophased propellers - starboard propeller blades leading those of the port pro-

peller by an angle equal to ψs = 5, 10, 15, 21 and 30 deg (refer to Figure 1(b));

(b) Counter-rotating top-in propellers (CNTI) - port propeller rotating clockwise and star-

board propeller counterclockwise as viewed from the rear, thus both propellers approach

the fuselage when moving downwards;

(c) Counter-rotating top-out propellers (CNTO) - port propeller rotating counterclockwise

and starboard propeller clockwise as viewed from the rear, thus both propellers approach

the fuselage when moving upwards.
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The RPM of the two propellers are always assumed to be kept equal, so that the audible vibration

that arises if this is not the case is avoided.

Computations were carried out solving the URANS equations with the k − ω SST turbulence

model[51] with a temporal resolution correspondent to 1 degree of propeller azimuth. URANS

equations were employed because they are efficient to solve and capture the propeller tonal

noise, which is the main contribution to the overall interior noise; no attempt was made at this

stage to study the broadband noise content. Numerical probes were included in the simulations

to directly record the pressure time history on the aircraft fuselage, in the main propeller region

of influence.

3.2 Computational Grids

Multi-block structured grids were built with the ICEM-HexaTM software. A fully-matched

body-fitted mesh of the whole aircraft comprising fuselage, wings and nacelles was generated

adopting an “O” grid topology around them. Propellers are inserted using the sliding plane

technique[52]. The grids for the different layouts were obtained by selecting the appropri-

ate propellers during the grid assembling process, mirroring the mesh in the case of opposite

rotational directions and rotating the starboard propeller drum by the desired angle for syn-

chrophased propellers. A regular background grid extends the airplane mesh until the far-field

via the chimera over-set method[53]. Globally, the full grid counts about 170 M cells, of which

around 132 M belong to the airplane mesh and around 16.5 million to each propeller. See [49]

for a detailed description of the employed grids.

4 DISCUSSION OF THE RESULTS

4.1 Aircraft Exterior Noise

Figure 2 shows the unsteady pressure field around the aircraft at one instant in time, and the

OSPL distribution on the aircraft surface, for the co-rotating layout with propellers in phase.

As can be seen from the acoustic field visualisations, the employed mesh resolution captures

the pressure perturbations generated by the propeller blades and preserves them further down-

stream, up until the aircraft tail. Noise travelling in the up-stream direction, and emitted from

the back of the nacelles, is also observed. The propagation of the acoustic waves, their inter-

action with the airframe and the interference with other sound waves, are clearly visible in the

CFD solutions.

Larger pressure perturbations are seen on the up-stroking blade side because of the higher blade

loading at the considered inflow conditions. The pressure perturbation developed by the inter-

action of the blade tip vortices with the wing leading-edge appears to be significantly larger

on the upwards-moving blade side, where the wing is more loaded as affected by the propeller

up-wash. Moreover, a constructive interference is observed among the direct sound field gen-

erated by the propeller rotation and the acoustic waves emanating by the interactions with the

airframe. Therefore, louder noise is expected on the inboard-up propeller side, and this is also

evident from the OSPL contours on the aircraft surface. From the fuselage noise distribution it

is also noted that the highest sound levels are in proximity to the propeller plane, from about

one propeller radius upstream up to the wing trailing edge station.
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(a) Transversal plane 1R behind the propeller plane. (b) Longitudinal plane at propeller spinner height.

(c) Starboard side. (d) Port side.

Figure 2: Sound field for the co-rotating layout with propellers in phase: instantaneous unsteady

pressure field visualisation (ψb = 90 deg) at the top and OSPL on the aircraft external surface

(estimate from URANS results over a quarter of propeller revolution - color scale range equal

to 45 dB) at the bottom.

Port and starboard sides display marked differences for co-rotating propellers, with a slight

change in the azimuthal position and extent of the main noise lobes depending on the blade

shift in phase. In contrast, the acoustic field and the noise distribution on the aircraft are sym-

metric in the case of counter-rotating propellers (with no synchrophasing). Small differences in

the OSPL are also seen for the same propeller rotational direction but for different installation

options (i.e. looking at the aircraft port side of phased co-rotating propellers and counter-rotating

top-in layout or at the starboard side of phased co-rotating propellers and counter-rotating top-

out layout), indicating the importance of the interaction of the acoustic fields of the two pro-

pellers and the ability of the CFD method to solve it.

To better evaluate, quantitatively, the various cases considered, the area of higher noise levels,

i.e. from around 1 radius ahead of the propeller plane up to the wing-fuselage junction, was anal-

ysed using the data from numerical probes included in the simulations. Figures 3(a) and 3(c)

present, as an example, the OSPL at the propeller plane as a function of the fuselage azimuthal

position. Figure 3(a) compares co-rotating in phase, counter-rotating top-in and counter-rotating

top-out layouts, and results of the isolated case in axial flight are reported as reference. As can
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(a) OSPL distribution as function of the fuselage az-

imuth θ at the propeller plane: comparison between

co-rotating and counter-rotating layouts as well as

the isolated propeller in axial flight.

(b) Unsteady pressure waveforms, for one propeller rev-

olution, on the aircraft fuselage at the propeller

plane, at θ = 57 deg: comparison between co-

rotating and counter-rotating layouts.

(c) OSPL distribution as function of the fuselage az-

imuth θ at the propeller plane: comparison between

co-rotating phased propellers and synchrophasing

cases. Refer to Figure 3(d) for the colour legend.

(d) OSPL averaged over the fuselage azimuth θ, in the

passengers area, as a function of the fuselage lon-

gitudinal position: comparison between co-rotating

cases and counter-rotating top-in scenario as a refer-

ence.

Figure 3: Fuselage exterior noise evaluation: comparison between the different propeller instal-

lation options. Noise estimate from numerical probes data over one full propeller revolution.
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be seen, the differences between isolated and installed propeller cases are substantial, regarding

both noise levels and pattern, making the cheap single-blade steady simulation not suitable to

evaluate the actual sound on the flying aircraft. The local OSPL reductions predicted for the

installed cases towards the top and the bottom of the fuselage are the result of interferences

occurring between sound waves of the various sound sources. Looking at the unsteady pressure

waveforms recorded by the probes at these locations (see for example Figure 3(b)) it is possible

to distinguish a second frequency in addition to the predominant eight-period oscillation related

to the blade passage. Differences, among co-rotating and counter-rotating configurations, in the

amplitude of the pressure perturbations and their phase are also evident and can lead to OSPL

discrepancies up to 5 or 6 dB for certain azimuthal locations. As anticipated from the acoustic

field analysis, the inboard-up propeller direction yields higher sound levels than the inboard-

down. The OSPL distribution in the case of co-rotating propellers is very close, even though

some differences are visible, to the one of the counter-rotating top-out propellers on the star-

board side and to the one of the counter-rotating top-in propellers on the port side in the central

part of the fuselage. Large differences are instead noted near the top area of the fuselage, where

the sound waves from the two propellers interfere, creating a different acoustic field depending

on the installation option. In general, the main effect of the positive synchrophase angle (see

Figure 3(c)) appears to be a shift of the noise upper lobe towards slightly larger fuselage az-

imuthal angles. Differences in the sound levels of the noise maxima are at most 2 dB, whereas

larger differences are seen regarding the points of minimum noise, where synchrophasing show

reductions of up to 5 dB more than phased propellers, indicating a stronger destructive interfer-

ence between acoustic sources.

Regions up-stream of the propeller rotational plane, and up to one propeller radius behind it

show very similar OSPL azimuthal distributions, with decreasing noise levels when increasing

the distance from the propeller plane. Further aft, where the sound emanating by the interac-

tions with the airframe also affects the OSPL on the fuselage, the azimuthal noise distribution is

more irregular and the differences between the various test cases become larger and substantial

(up to 10 dB of difference are visible for some azimuthal locations around R/2 away from the

propeller plane). A couple of additional upper-lateral lobes is noticed, whose peak noise levels

vary with the fuselage station and decrease with a positive increase of the synchrophase angle.

It is interesting that the counter-rotating top-in layout is the only one showing, at equal distances

from the propeller plane, lower OSPL values down-stream than up-stream.

Globally, the counter-rotating top-in option appears the quietest, as it can be also seen in Fig-

ure 3(d) where the azimuthally-averaged OSPL value is presented as function of the fuselage

longitudinal axis. Synchrophasing has a beneficial effect behind the propeller plane, specially

closer to the wing-fuselage junction, indicating that propeller synchrophasing modifies not only

the acoustic interference that develops between the sound fields of the two propellers, but also,

and in greater ways, the interference of the propeller’s direct sound fields with the one produced

from the interactions with the airframe. Larger synchrophase angles provide larger noise reduc-

tions in this area, with a non-linear relation between ψs and OSPL, the maximum achieved for

ψs ≤ 21 deg. However, ahead of the propeller plane, where differences are smaller, larger syn-

chrophase angles may yield increased in sound levels. Anyhow, at these flight conditions, noise

gains achieved by synchrophasing appear smaller, at all fuselage stations, than that provided by

9
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the choice of a counter-rotating top-in layout.

4.2 Cabin Interior Noise

The SPL for the first three propeller harmonics and the OSPL of the sound signal that would

be heard by the passenger example are presented, for all test cases, in Figure 4 and Table 2. Co-

rotating in phase propellers are shown to be the loudest option at this flight condition, and the

counter-rotating top-in configuration the quietest. The latter exhibits significant noise reductions

at the three first tones, yielding an OSPL decrease of more than 4 dB. Synchrophasing is also

observed to have a considerable beneficial effect regarding cabin noise.

Figure 4: Cabin interior sound evaluation, for the example passenger, using experimental TF:

comparison of the SPL for first, second and third tone between the different propeller installa-

tion options. Relative data with respect to the case with co-rotating phased propellers.

Table 2: Cabin interior sound evaluation, for the example passenger, using experimental TF:

comparison of the OSPL between the different propeller installation options. Relative data with

respect to the case with co-rotating phased propellers

CNTI Layout -4.21 dB

CNTO Layout -1.97 dB

ψs = 5 deg -0.39 dB

ψs = 10 de -1.29 dB

ψs = 15 deg -2.42 dB

ψs = 21 deg -3.21 dB

ψs = 30 deg -1.87 dB
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The choice of ψs = 21 deg appears the best among the angles considered, providing a noise

gain of more than 3 dB, mainly thanks to the reduction of the first harmonic SPL. Smaller angles

are less effective, while larger angles are not ideal because of the sound levels increase registered

ahead of the propeller plane. It is finally interesting to note that even the counter-rotating top-

out layout, which has both propellers rotating inboard-up, shows lower noise levels than co-

rotating phased propellers. This suggests the development of some destructive interferences

in the counter-rotating case between the sound fields of the two propellers that do not occur

in the co-rotating case (the pressure disturbance that travels ahead form the fuselage surface

at the height of the propeller plane is also seen to be smaller in the external acoustic field

visualisations).

5 CONCLUSIONS

URANS computations of a full twin-engined turboprop aircraft were successfully carried out

with the HMB3 flow solver to investigate propellers installation effects on the near-field aircraft

acoustics and cabin noise. The eight-bladed IMPACTA propeller, representative of a modern

propeller design, was employed. Co-rotating propellers, in phase as well as with synchrophas-

ing, and counter-rotating propellers were considered. Significant differences were observed in

the exterior acoustic field between co-rotating and counter-rotating configurations whereas, in

line with previous studies, synchrophasing is shown to mainly affect the interior noise. At the

cruise conditions tested, the counter-rotating top-in option appears the quietest, with a bene-

fit of more than 4 dB for the example passenger compared to co-rotating phased propellers.

The inboard-up propeller rotation yields to louder noise because of the higher blade loading

on the inboard propeller side and because of constructive acoustic interferences between direct

propeller sound waves and noise emitted, as well as reflected, from the interactions with the air-

frame. However, in the case of counter-rotating top-out layout some destructive interferences

occur and also this option, which displays the highest aerodynamic efficiency, shows a OSPL

reduction at the example passenger location of almost 2 dB with respect to co-rotating phased

propellers. More than 3 dB of OSPL gain can instead be achieved with synchrophasing, with

the best angle tested being ψs = 21 deg, i.e. close to the maximum relative blade shift angle.

The noise reduction obtained via synchrophasing appears mainly between the propeller plane

and the wing, indicating the existence of favorable acoustic interferences that develop between

the propellers direct sound field and the waves emanating by the airframe.

Future Work Further developments of this study should assess the effectiveness of syn-

chrophasing for the counter-rotating top-in layout to see if larger noise gains can be achieved

by adding the two beneficial effects. Moreover, a different blade design proven considerably

quieter in isolation[47] should be analysed installed on the aircraft to evaluate how much it can

contribute to the noise reduction achieved by the choice of the installation layout.
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NOMENCLATURE

Acronyms

BPF Blade Passing Frequency

CFD Computation Fluid Dynamics

OSPL Overall SPL

SPL Sound Pressure Level

TF Transfer Function

URANS Unsteady Reynold Averaged Navier-Stokes

Greek Symbols

Θ Fuselage azimuthal coordinate [deg]

ψb Azimuthal position of reference blade [deg]

ψs Starboard propeller synchrophase angle [deg]

Latin Symbols

p′(x, t) Unsteady pressure time signal [Pa]

R Propeller Radius [m]

X Fuselage longitudinal coordinate [m]
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