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Abstract. This paper presents some of the challenges in measuring and simulating cavity flows.

The main characteristics of cavity flows are first described using experimental data, and beam-

forming is then used to provide good estimates of acoustics away from the cavity walls. Then,

a simple model based on standing waves is introduced and it appears that the results capture

some of the flow physics. Simulations of cavity flows and of store releases, and the importance

of statistics in understanding the physics involved are shown.

1 INTRODUCTION

The growing demand for stealth operation of unmanned and manned combat aircraft, pushed

engineers to move externally carried stores to weapon bays like the ones found on the F-35

and the B-52. Cavity flows generate strong acoustic fields, comprising broadband and tonal

noise, called Rossiter modes[1]. Once the bay doors are open, the resonant cavity flow may

be an obstacle to the safe store separation. The store is subject to unsteady loads, driving

its trajectory, and the flow environment leads to store trajectory variability that is difficult to

predict [2, 3]. In addition, cavity tones may excite the store and aircraft structures [4, 5], and

may induce structural fatigue and failure.

This paper presents computational fluid dynamic (CFD), and theoretical results for transonic

cavity flows. First, the main characteristics of cavity flows are presented using experiments

available in the literature. Then, the difficulty to model this type of flows, and the implications

for store release are shown. Afterwards, the ability of CFD to model cavity flow is shown and

results are compared to experiments. Finally, results from coupled CFD/6DoF simulations of

store release are presented, and the importance of statistical analysis of cavity flows is high-

lighted. In addition, recommendations for future studies are given.

2 UNCERTAINTY AND VARIABILITY IN CAVITY FLOWS

Experiments performed for the M219 cavity [6] provide a first insight into cavity flow un-

certainty and variability. M219 has a length to depth ratio of 5, a width to depth ratio of 1, and

a length of 0.51m. Experiments were carried out by Nightingale et al. [6] at Mach 0.85, and

a Reynolds ReL, based on the cavity length, of 6.5 million. Two cavities were tested, one has



G.J.M. Loupy and G.N. Barakos

two doors attached at its sides at an angle of 90 degrees (Figure 1), and the other has no doors.

Experimental data was obtained using KuliteTM pressure transducers at the cavity ceiling.

For the clean cavity configuration, a signal of 1910 travel times is available. However, three

tests at the same conditions, named S1, S2 and S3 were performed for the M219 cavity with

doors. They were sampled at different frequencies and have different durations. Table 1 presents

a summary.

Figure 2 shows the SPL and OASPL at the ceiling mid-span for the different experimental

data sets computed using the raw data. Vertical lines represent the Rossiter modes, that are em-

pirical estimates of the cavity acoustic tones[7]. The SPL shows strong tones close to Rossiter

modes 1, 2, 3 and 4 and a strong broadband noise. There is a finite number of tones of different

amplitudes, and their distribution is not harmonic. S1 and S2 have similar SPL, and show less

than 2dB differences in the OASPL. However, run S3 is different by 40dB in frequency, and

4dB in amplitude for the tones. In addition the OASPL is 3dB lower at the cavity front. In the

following, run S2 is employed as it is the longest signal, and it agrees with the over-sampled

signal S1 obtained two years earlier [6].

((a)) Bottom view ((b)) Downstream view

Figure 1: Schematic view of the M219 cavity with doors.

Name Signal length (Travel Time) Sampling (Hz) Date

No Doors 1910 6.00 Oct 1991

Doors S1 1831 31.25 Sep 1999

Doors S2 16798 6.00 Mar 2001

Doors S3 1910 6.00 Sep 1999

Table 1: Available signals for CFD comparison.
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Figure 2: M219 with door SPL and OASPL for three experimental signals.

The experiment is divided in windows of 25 travel times, and the maxima and minima over

all windows are shown as envelope and vertical bars in figure 3. The envelope is wider than

20dB in SPL, and wider than 10dB in OASPL showing large fluctuations of the noise intensity

over large time scales. Also, SPL, and OASPL are computed for signal sections of 25 travel

times are shown for three selected windows. The time t=25.2s shows a large decrease of modes

1 and 2, while mode 3 is amplified. This shows that energy can move between tones, and this

is called mode switching [8]. Those changes are related to the shape of the shear layer in time,

and show that the noise field fluctuates over large time scales.

To dissect the pressure fluctuations over small time scales, Kegerise [8] used the wavelet

transform to decompose the pressure signal in frequency, and time space. The wavelet transform

W y
Ψ
(f, t) [9] is a convolution of the signal s(t)′ = s(t) − s with a scaled mother wavelet Ψ(t)
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Figure 3: Experimental SPL and OASPL at the ceiling mid-span and at different time with

envelope.

conserving the sign of the signals in time and frequency:

W y
Ψ
(a, b) =

1
√

cΨ |a|

∫

∞

−∞

s′(t)Ψ

(

t− b

a

)

dt. (1)

In the above equation, a is called the dilatation or the scale, b the translation parameter, cΨ =
√

π/β and β = ω2
0 . The dilatation a is related to the frequency f of the wavelet, the translation

parameter b is related to the time shift t of the wavelet. The mother, or Gabor wavelet Ψ(t) [9].

Band Integrated Wavelets (BIW) plots show the energy content within a particular frequency

range and are calculated using the following equation:

BIW (t) =

∫ f2

f1

W
y
Ψ
(f, t)2 (2)

where f1 and f2 are the lower and upper limits of the desired frequency range.

The wavelet envelope |W y
Ψ
| is the amplitude of the frequency in time, and is determined

using the maximum of the absolute value of the wavelet transform W y
Ψ

over windows equal to

half a period of the frequency. The wavelet amplitude in decibels WdB is given by:

WdB(f, t) = 20 LOG10

[

|W y
Ψ
(f, t)|2

pref

]

(3)

with pref the international standard for the minimum audible sound, which has the value of

2.10−5 Pa [10]. In the same way, Band Integrated Wavelets amplitude in decibel BIWdB is

given by:

BIWdB(t) = 20 LOG10

[

∫ f2

f1

|W y
Ψ
(f, t)|2

pref

]

(4)
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Figure 4(a) shows an example for the experimental pressure of the M219 with doors at 95%

of the ceiling mid-span. The pressure shows strong fluctuations at the tonal frequencies over

small time scales. In addition, their amplitude appears to be modulated in time (Figure 4(b)).

For example the first mode shows a maximum amplitude at travel time 580, while the second

mode has a maximum at travel time 520. The pressure probes are analysed for several points

along the cavity length, and the BIW is represented in figures 4(c) and 4(d) along the ceiling

mid-span. The scalogram is integrated in windows of 20Hz centred on cavity modes 1 and

2. There are standing wave oscillations, characterised by nodes (minima of amplitude), and

antinodes (maxima of amplitude). Furthermore, there is phase opposition between neighbouring

antinodes. Figures 4(e) and 4(f) show that the mode amplitude modulation globally affects the

entire cavity length.

Cavity flow fluctuations are the summation of small time scales (order of a travel time), and

larger time scales (order of hundreds travel times) that create a non periodic flow as seen since

the first experiments of Rossiter [1]. Other researchers suggest that these flows are pseudo-

periodic [11]. Experimental measurements of cavity flows are difficult as multiple signals of

the same cavity flow will not necessarily give exactly the same result. Numerical simulation

and modelling are also difficult, as multiple time scales have to be correctly simulated to obtain

an accurate cavity flow representation.

Experimental pressure data is limited to wall surfaces using kulite or pressure sensitive paint

[12]. However, the main sources of noise are localised inside the shear layer are difficult to mea-

sure without intrusive techniques. Beamforming has been used in reference [13], and proved

to be capable of capturing the noise field around the cavity using a limited number of probes,

and the mean CFD flow-field to compute the noise propagation. Figure 5 shows a comparison

between the BISPL computed over all grid points, and the beamforming computed using the

acoustic array over the M219 cavity with doors. The beamforming reconstruction captured the

strongest noise sources seen on the BISPL. This technique could be used in wind tunnels, cou-

pling microphone array measurements, and PIV data. As a result, further cavity flows physics,

and more data could be obtained for CFD validation.

3 MODELLING OF THE CAVITY FLOW PHYSICS

Cavity flow fluctuations are complex, and depend both on space and time, and so, modelling

of such flows is challenging, and still remains an active research area. The fundamental goal

is to identify the trigger of the tones, to help the design of flow control devices. Also, for

routine engineering applications, estimates of the cavity flow noise field both in amplitude and

frequency in a fast way, would be an advantage.

The first models appeared 70 years ago relying on experimental observations. Plumblee

et al. [14] suggested that the turbulence growing in the shear layer provided a broadband noise

source driving the cavity oscillations. The cavity response was to amplify small bands of fre-

quencies, depending on the geometry and conditions. Rossiter [1] proposed a different model

based on an acoustic feedback loop. Using shadowgraph images, he spotted vortices shed peri-

odically from the front lip of the cavity. The vortices were travelling along the cavity length at

the shear layer, generating acoustic waves when reaching the downstream wall. These acoustic

waves travel upstream and interact with the shear layer, resulting in shedding of new vortices.
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((a)) Scalogram at X/L=0.95 ((b)) Scalogram amplitude at X/L=0.95

((c)) BIW of mode 1 ((d)) BIW of mode 2

((e)) BIW amplitude of mode 1 ((f)) BIW amplitude of mode 2

Figure 4: Experimental scalogram at the ceiling mid-span.
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Figure 5: Comparison between BISPL and beamforming reconstruction at cavity mid-span.

Multi-spiral array with 31 microphones, placed at Z/L=1.5.

He proposed a formula based on those observations for estimating the tonal frequencies, that
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Figure 6: (a) Standing waves schematic, (b) Reflections and resulting pressures in cavity.
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Figure 7: Noise at 95%L of the M219 ceiling mid-span. L=0.51m.

was further modified by Heller [7] according to:

fm =
U∞

L

[

m− α

M∞

(

1 +
(

γ−1

2

)

M2
∞

)

−1/2
+ 1/κν

]

(5)

where fm is the frequency of mode m, U∞ is the free-stream velocity, M∞ is the free-stream

Mach number, L is the cavity length, γ is the ratio of specific heats of the employed gas, α
represents a phase shift, and κν is the convection velocity coefficient of the vortices in the shear

layer. These empirical constants have been tuned to fit experiments, and have the values 1.4,

0.25 and 0.57 respectively, for the case of the present study. Recent experimental data [11, 15]

suggest that equation 5 can be valid even if κν is different from the value found by Rossiter. As

pointed out by Rossiter, this model is "merely an attempt to give a simple explanation of what

is undoubtedly a highly complex motion" [1].

Other models rely on the excitation of the shear layer or on a small number of acoustic waves

travelling inside the cavity [16, 17, 18]. They give a fair estimation of the tonal frequencies, but

miss the tonal amplitude, the noise field shape, and all the unsteadiness described in section 2.

The model from Alvarez [19] is better, providing the existence of the cavity modes.

Another model providing further insight is described in reference [13]. Based on the ob-

servation of standing waves in cavity flows, and the presence of numerous reflected waves in

experiments [11, 20, 21, 22], it was assumed that the main mechanism driving the tone gen-

eration was similar to an one dimensional standing wave resonator, shown in figure 6. First,

the pressure waves were generated as the shear layer impacted the downstream corner using a

large range of frequencies (position (1) in figure 6). The pressure waves travelled towards the

opposite wall (position (2) in figure 6), and were alternatively reflected (position (3) in figure

6) at the front, and at the aft walls, assuming an absorption by the reflection, and during the
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((a)) Mode 1 - Expe. ((b)) Mode 2 - Expe. ((c)) Mode 3 - Expe.

((d)) Mode 1 - Resonator ((e)) Mode 2 - Resonator ((f)) Mode 3 - Resonator

Figure 8: BIW envelope at ceiling mid-span for experimental and unsteady resonator.

wave travelling. The downstream waves travelled along with the shed vortices at about 69% of

the free-stream velocity, while the upstream waves travelled at the sound speed reduced by the

unsteady flow velocity computed with CFD. Finally, the resulting pressure signal was the sum

of all reflections (curve (4) in figure 6).

In comparison with experiments, this model was capable to predict a finite number of tones,

and the strong broadband noise (Figure 7(a)). In addition, the variation of the tone amplitude in

time was captured (Figure 7(b)). More importantly, the spatial distribution of the modes along

the cavity length was also predicted in agreement with experiments (Figure 8). Nevertheless,

the relative modal amplitudes were not correct compared to the experiments, highlighting a

missing part of the physics. This may be the shear layer motion that is driven by the strong

pressure field in the cavity, and influences the generation of pressure waves at aft wall, creating

a feedback loop. The model also needs detailed CFD data.

Overall, the available literature suggests that as the flow establishes, the shear layer hits the

aft wall producing high frequency pressure waves reflecting inside the cavity. This wave super-

position generates strong cavity modes at low frequencies due to the flowfield turbulence. Then,

the cavity modes excite the shear layer motion, and this further amplifies the low frequencies

in the pressure waves produced at aft wall. This feedback loop further amplifies the resonance,
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and the cavity modes lock to their final frequencies.

Cavity flows involve very complex interactions between acoustics, turbulence, and shear

layer motion that are difficult to model in a simple way. Engineering applications need accurate

simulations, even with the presence of moving stores which can not be taken into account by

the present models. Other researchers [23, 24, 25, 26] tried to simulate store releases with the

grid method measuring the time averaged loads on the store at different positions and attitudes

by means of wind tunnel testing or CFD. Then the trajectory was computed feeding a 6DoF

model with loads interpolated from the grid of aerodynamic influences. This method could be

used as a rough estimate of the store trajectory, but is not accurate enough for store clearance

certification that must account for cavity flow fluctuations evidenced in this section, and flow

interactions with the store. Consequently, CFD appears to be a better candidate for engineering

simulation of weapon bay flows.

4 CAVITY FLOW SIMULATION WITH CFD

The Helicopter Multi-Block (HMB3) [27, 28] code is used in the present work. The solver

is described in references [29, 30, 31, 32] and has been extensively validated for cavity flows.

DES is by far the most common way to account for the effect of turbulence in cavity flows.

Nevertheless, DES is expensive, especially when several computations of store releases are

required. Promising results with the SAS method [33] encouraged Babu et al. [29] to use this

approach for weapon bay flows. Their results suggest that SAS captures the essential physics of

the weapon bay, and at the same time, provides a significant reduction in CPU time by almost

an order of magnitude. For this reason SAS is also used in the present work. In the following,

the unsteady and averaged pressure field are compared for the M219 cavity with and without

doors. CFD results for three grid densities of 13, 22 and 34 million points are compared to the

experimental data for the cavity with doors. The computations used a dimensionless time-step

of 0.01, and SAS are presented in table 2.

Name Door Angle (deg) Grid size (106 cells) Cavity Travel Times

Coarse 90 13.2 25

Medium 90 22.3 25

Fine 90 33.9 30

No doors - 23.0 30

Table 2: Details of the M219 computations.

Figure 9 shows the SPL comparison between CFD and experiments at three points at 5%L,

45%L, and 95%L on the cavity ceiling mid-span, for the M219 cavity with doors. Vertical

black lines represent Rossiter’s modes. The SPL results are in better agreement with the test

data when the fine grid is used, capturing both tonal and broadband noise.

The time averaged Cp (Figure 10(a)) at the ceiling, and at the mid-span of the cavity, shows

grid convergence, with negligible changes between the different grid densities. In the OASPL

10



G.J.M. Loupy and G.N. Barakos

Frequency (Hz)

S
P

L
 (

d
B

)

0 200 400 600 800 1000
110

120

130

140

150

160
Experimental
Coarse

Medium
Fine
Experimental Envelope

((a)) X/L=0.05

Frequency (Hz)

S
P

L
 (

d
B

)

0 200 400 600 800 1000
110

120

130

140

150

160
Experimental
Coarse

Medium
Fine
Experimental Envelope

((b)) X/L=0.45

Frequency (Hz)

S
P

L
 (

d
B

)

0 200 400 600 800 1000
110

120

130

140

150

160
Experimental
Coarse

Medium
Fine
Experimental Envelope

((c)) X/L=0.95

Figure 9: M219 with door SPL at ceiling mid-span for CFD and experiments.
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Figure 10: OASPL, and mean CP along the M219 with doors ceiling mid-span.
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(Figure 10(b)), the second Rossiter mode is dominant, with a W shape of the OASPL, as cap-

tured by the CFD and the experiments [34]. There is convergence towards the fine mesh solu-

tion, with a small relative difference of 1 dB between medium and fine grids.

The CFD results are compared with experiments for a cavity without doors in figure 11.

Overall, the CFD captured well the differences between the door and no door configurations,

including the strong increase of the second cavity mode with the doors, suggesting that SAS

[35] is a suitable method for simulating this flow. Both cases with and without doors show a

small overestimation of the OASPL, all along the cavity length. A large number of simulations

performed with various models [36, 37, 38] had similar overestimation. This may be due to

experimental errors, the signal length, as well as limitations of the SAS [35] and DES [39]

approaches.

The time averaged stream-wise velocity is compared in figure 12 between CFD and PIV

experiments [40] for the M219 cavity without doors. The CFD results agree well with the

experiments for the stream-wise velocity component, showing the development of the shear

layer along the cavity length.

The wavelet transform is used to perform spatio-temporal validation of the CFD signals.

The pressure probes are analysed, and the Banded Integral Wavelet (BIW) is given in figure 13

for 25 travel times, along the ceiling centre line. The BIW is integrated in windows of 20Hz

centred on the first, and second cavity modes. There is a fair agreement of the CFD with the

experiments, showing standing wave oscillations with respectively a tick, and a W shape for

modes 1 and 2.

The BIW envelope is shown figure 14. The CFD signal agrees with the experiments showing

the characteristic shape of the first mode, with two antinodes at the front, and the aft wall. The

second mode shows the W shape seen on the OASPL. Also, both experiments and CFD show

global fluctuations of the amplitude along the cavity length.
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Figure 11: Noise along the no doors M219 cavity ceiling mid-span.
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Figure 12: Time averaged stream-wise velocity at the mid-span of the cavity along vertical
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Figure 13: BIW at the cavity ceiling centre-line for modes 1 and 2.
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Overall, the SAS turbulence model shows reasonable agreement with experiments for the

transonic cavity pressure field on average and in terms of spatio-temporal components.

5 STATISTICAL ANALYSIS OF STORE RELEASES

Store release simulations are performed here and include CFD and Six Degree of Freedom

(6DoF) flight mechanics. A small number of CFD tools are able to perform this type of simu-

lation and were used for realistic [41, 42, 43], and prismatic [26, 44, 45] weapon bays. Results

show variability for most of the cases as LES, DES, and SAS are able to resolve the turbulence

within the cavity [37]. Nevertheless, a small number of numerical releases were performed for

each case, and none of the published works provided any further insight on the mechanism that

((a)) Experimental - Mode 1 ((b)) Experimental - Mode 2

((c)) CFD - Mode 1 ((d)) CFD - Mode 2

Figure 14: BIW amplitude at the cavity ceiling centre-line for modes 1 and 2.
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drives the store trajectory in terms of average and variability. This is because the non periodicity

of this flow makes every release different.

Reference [3] tackles this difficulty in performing twenty numerical releases and considering

the statistics of the ensemble. The computations were carried using HMB3 and the Scale-

Adaptive Simulation. The free-stream Mach number was 0.85 and the Reynolds number based

on the cavity length (ReL) was 6.5 million. The cavity had a length to depth ratio of 7, and was

3.59m long, and 1.03m wide. The store was 90% of the cavity length with four fins in a cross

configuration (Figure 15). The store release includes three phases. At carriage (Z/D=-0.5), the

store is fixed while the flow is allowed to develop. Then, during the stroke phase, the store is

pushed towards the cavity opening. During this phase, a vertical velocity of 5m/s is imposed on

the store, with other degrees of freedom set to zero. This phase ends when the stroke length is

reached. Finally the store is free to move under the aerodynamic forces.

The trajectory variability (Figure 16) was negligible for the translations, while the rotations,

mainly in roll, varied widely. Filtering the simulation results, revealed that the vertical dis-

placement of the store was driven by the lower frequencies related to the ejection velocity and

gravity. On the other hand, the rotation variability came from the tonal fluctuations, and only

the roll angle was driven by the finest fluctuations in the flowfield related to turbulence. The

receptivity of the store to all the time scales of the cavity flow explained that each trajectory

was unique.

A statistical metric was proposed to identify the minimum number of simulations necessary

for capturing the mean of the trajectories as the maximum of the normalised difference between

the average of n+1, and n trajectories:

∆µ =
max|µ(t, n+ 1)− µ(t, n)|

We

(6)

with µ(t, n) the average of n trajectories, where t covers the complete time of simulation. The

envelope of the trajectory was defined as the maximum difference between minimum, and max-

imum over all releases and all store vertical positions. We was the largest envelope width over

all positions, and indicated by dashed lines in figure 16. A trajectory component was consid-

ered as converged if the difference (∆µ) between two consecutive averages was less than 5%.

The number of releases to converge the statistics depends on the order of the trajectories. To

minimise this effect, ∆µ was computed for 100.000 random trajectory permutations. For each

permutation, the number of releases required to converge the statistics was computed, and the

Figure 15: Geometry, cavity axes, and the store at carriage position.
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Figure 16: Trajectory of full and half stroke cases.

cumulative plot in figure 17 indicates the number of converged permutations in respect to the

number of releases included in the mean. For the store at hand, 17 trajectories were necessary,

mainly due to variability in roll associated with its low roll inertia.
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Figure 17: Number of converged permutation as function of the number of releases included in

the mean.
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Using the averaged flow data, the trajectory phases were identified and the role of the pres-

sure field inside the cavity was clarified. For example, figure 18 shows the vertical force, and

pitching moment averages considering all times of the simulations from stroke initiation until

a common point in time corresponding to the shortest of the simulated trajectories. The load

peaks were identified and are the result of the interaction between the store and the shear layer.
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Figure 18: Averaged translations and rotations with half and full stoke releases.

HMB3 proved to be efficient for engineering computations of store release, using a reason-

able amount of CPU. In addition, the obtained large CFD data sets gave more insight in the

physics involved.

The next step in this effort should be to produce more experimental data for CFD validation.

HMB3 results agreed with captive trajectory system (CTS) experiments of a store released from

a wing [46], and from a cavity flow [47]. However, CTS experiments [47] have the drawback to

work by integrating the loads on the store, before moving it, neglecting the effect of the smaller

scales of the cavity flow. The only way to validate a CFD code for the trajectory variability

from a weapon bay, is to perform free releases in wind tunnels, or during flight test to take all

flow scales into account. Flight tests have been performed by the Institute of High Performance

Computing Application to Air Armament (IHAAA) [48], and wind tunnel tests by Boeing [49]

and by the US Air Force [2]. Nevertheless, this data involved a small number of releases, was

not disclosed to public[48], was affected by scaling effects[2], and the test conditions were not

properly reported[49].

Future store release experiments must consider a large cavity of at least a meter long to

minimise scaling effects. Additionally, the number of releases to perform should be determined

using the criteria of equation 6, to ensure that statistics are converged. Then, it will be possible

to compare standard deviation, and the average trajectory between CFD and experiments.

6 CONCLUSIONS

This paper gave a detailed view of the difficulties in measuring and simulating weapon bays

flows. Cavity flow fluctuations include a large range of time scales. This creates a non-periodic

flow that is unique for each weapon bay door opening. Cavity flows are difficult to model,

as they are the result of the interaction between acoustics, turbulence and shear layer motion.
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Engineering applications need CFD to take into account complex geometries, and store inter-

actions with the cavity flow. Strong coupling between CFD and 6DoF methods can be used to

simulate store trajectory variability, and to build statistics within a reasonable time. This is the

best way, at present, to make understanding from the trajectories that are driven by all cavity

flow scales. Future work should focus on experimental tests to better validate CFD codes for

the store trajectory variability.
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NOMENCLATURE

Acronyms

BIW Banded Integrated Wavelet

CFD Computational Fluid Dynamics

DES Detached Eddy Simulation

HMB Helicopter Multi-Block

LES Large Eddy Simulation

OASPL Overall Sound Pressure Level

PIV Particle Image Velocimetry

SAS Scale Adaptive Simulation

SPL Sound Pressure Level

TT Travel Time

6DoF Six-Degree of Freedom

Greek Symbols

α Rossiter Phase shift (-)

∆µ Statistical convergence index (-)

κν Rossiter convection velocity coefficient (-)

γ Ratio of specific heats (-)
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µ(t, n) Average of n trajectories

ω0 Pulsation (2πf ) (1/s)

φ, θ, ψ Roll, pitch and yaw angles (deg)

Ψ(t) Mother wavelet (-)

Latin Symbols

p′(x, t) Unsteady pressure time signal [Pa]

R Propeller Radius [m]

X Fuselage longitudinal coordinate [m]

Cx, Cy, Cz Axial, side and normal force coefficients (-)

Cl, Cm, Cn Rolling, pitching and yawing moment coefficients (-)

cn−j , cn+j Upstream, and downstream wave speed at point j and time n (m/s)

Cp Pressure coefficient (-)

D Cavity depth (m)

fm Rossiter mode frequency (Hz)

Ix, Iy, Iz Moment of inertia of the store (kg.m2)

L Cavity length (m)

m Rossiter mode number (-)

M∞ Free-stream Mach number (-)

p, q, r Roll, pitch and yaw rates (deg/s)

p Pressure (Pa)

pref International standard minimum audible sound (2.10−5Pa)

ReL Reynolds number based on cavity length (-)

u, v, w Velocity components (m/s)

t Time (s)

U∞ Free-stream Velocity (m/s)

unj Axial flow-field velocity at point j and time n (m/s)
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W Cavity width (m)

We Maximum envelope width

W y
Ψ

Wavelet transform

X, Y, Z Earth reference coordinates (m)

Xb, Yb, Zb Store reference coordinates (m)
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