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Abstract. In the following paper a multifield approach towards elasto(visco)plasticity is
derived to enable the application of higher order time integration schemes to the balance
of linear momentum and the material laws simultaneously. The numerical implementa-
tion of this scheme is based on distinct types of Newton procedures as well as on the
finite element method. Its functionality is demonstrated by means of a dynamic bench-
mark example. Therein, two distinct yield limits are assumed to analyze the effect of
elasto(visco)plastic switching points. Furthermore, the material models of elastoplastic-
ity and elastoviscoplasticity are opposed. In this context the time discretization error
and the orders of convergence of distinct field variables of a third order stiffly accurate
diagonally implicit Runge-Kutta method are analyzed.

1 MOTIVATION

In industrial mass production the application of simulation techniques gains increasing
importance. On the one hand the evaluation of components concerning their function-
ality is inevitable, on the other hand the simulation of whole process chains is a crucial
topic. An example where both aspects have to be taken into account is the integrated
thermomechanical forming process depicted in Figure 1. Due to a local inductive heat-

Figure 1: Integrated thermomechanical forming process, cf. [19]

ing, in the first step a non-uniform temperature distribution is achieved. Afterwards the
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workpiece is forged and simultaneously cooled due to the contact with the forming die.
Within both process steps the evolution of distinct steel phases is enabled, leading to
areas with distinct but defined material properties. A further adjustment of the material
characteristics is obtained via a partial cooling with a high pressured air stream in the
third process step, cf. [19]. Because of the variety of interacting fields and their dynamic
behavior high demands on the material modeling as well as on the numerical schemes
exist. The first and the last process step are extensively studied in [3, 4] and references
therein, while exemplary material models for the second step can be found in [12, 13].
In this paper the focus lies on the numerical realization which is necessary to simulate
the second process step. In this context, a variational multifield approach is followed to-
gether with a stiffly accurate diagonally implicit Runge-Kutta time integration scheme
to dissolve the dynamic behavior. Thereby, the time discretization error as well as the
order of convergence of the time discretization scheme are analyzed in dependence of the
elasto(visco)plastic switching point and the chosen material formulation. To be able to
concentrate on the corresponding effects, simplifications are performed. On the one hand
thermal effects are neglected, on the other hand the occurring deformations are limited
to the small strain case. Furthermore, the most simple isotropic ideal elastoplastic and
elastoviscoplastic material laws presented in [17] are taken into account and the occurring
contact with the forming die is disregarded.

2 BASIC EQUATIONS FOR ELASTO(VISCO)PLASTICITY

The mathematical description of an arbitrary continuum mechanical body’s deforma-
tion is carried out using the balance of linear momentum

ρü = ∇ · σ + ρb (1)

together with the Neumann and Dirichlet boundary conditions

σ · n− t∗ = 0 u = u∗. (2)

Therein, the volume forces ρb, containing the density ρ, and the divergence of the stress
tensor σ are linked to the acceleration field ü. The prescribed stress vector and the
displacement vector are denoted by t∗ as well as u∗, while the outward normal vector of
the continuum mechanical body B is denoted by n.
The association of elastoplastic or elastoviscoplastic material behavior to the domain B is
achieved within the context of constitutive laws and evolution equations, [17]. For their
formulation an additive decomposition of the linear strain tensor ε = 1

2

[
∇u+∇uT

]
into

an elastic εe and a (visco)plastic part εp

ε = εe + εp (3)

is assumed. To distinguish between elastic and (visco)plastic behavior, the von Mises
yield function

f = ‖dev (σ)‖ −
√

2

3
σy (4)

2
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with the yield stress σy is introduced. If the actual stress state yields to values smaller than
zero, elastic properties prevail otherwise (visco)plastic properties are predominant. Within
the isotropic elastic case the link between stresses and strains is established exploiting the
elastic constitutive tensor

C = λ1⊗ 1 + 2µI, (5)

containing the unity tensors 1 = δijei ⊗ ej and I =
1

2
[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el as

well as the Lamé parameters λ, µ. Hence, the constitutive law

σ = C : εe = C : [ε− εp] (6)

can be established. The determination of the (visco)plastic strain tensor depends on the
type of formulation. In the plastic case, the evolution equation and the Kuhn-Tucker
conditions with the Lagrange multiplier γ

ε̇p = γ
dev (σ)

‖dev (σ)‖
with γ ≥ 0, f(σ) ≤ 0, γf(σ) = 0 (7)

are elaborated. They state, if purely elastic deformations prevail, that f < 0 and γ = 0
have to hold. For plastic deformations the examined stress state has to lie on the yield
surface with f = 0 and γ ≥ 0 has to be fulfilled. Thereby, the Lagrange multiplier
γ is calculated by solving the consistency condition γḟ = 0. The derivation of these
assumptions are depicted amongst others in [11, 18].

In the viscoplastic case equation (7) is reformulated into

ε̇p = γ
dev (σ)

‖dev (σ)‖
with γ =

1

χ
〈f(σ)〉. (8)

Hence, the Kuhn-Tucker conditions are neglected and the Lagrange multiplier is
prescribed, containing a smoothed version of the yield function

〈f(σ)〉 :=

f(σ) for f(σ) ≥ 0

0 for f(σ) < 0.
(9)

Hence, elastic properties exist if f < 0 holds and viscoplastic behavior is predominant for
f ≥ 0. Correspondingly, stress states lying outside the yield surface are permitted.

3 MULTIFIELD ACCESS TOWARDS ELASTO(VISCO)PLASTICITY

To determine the behavior of an arbitrary continuum mechanical body possessing
elasto(visco)plastic material characteristics as described in the preceding section 2, nu-
merical implementation schemes have to be derived. Herein, a multifield approach is
followed which enables the usage of a wide class of higher order accurate time integration
schemes for the balance of linear momentum and the material laws, simultaneously, by
elevating the latter also on element level. To derive this access, a physically motivated
variational principle will be presented and extended to the elasto(visco)plastic regime.
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3.1 Principal of Jourdain

Originally, the principal of Jourdain was meant to fill the gap between the principle
of virtual power and Gauss’ principle of least constraints, cf. [10]. In this paper it will
be generalized and extended, assuming that the total power of a system, consisting of the
kinetic energy, the internal energy, the power due to external forces and a dissipational
potential, reaches a stationary point, cf. [2, 14]. For elastoplasticity this leads to the
problem formulation

stat
u̇,ε̇p,σ,γ≥0

P (u̇, ε̇p,σ, γ). (10)

Evaluating the stationarity condition as demonstrated in [22] results in the weak forms∫
Ω

ρ0δu̇ · ü dV +

∫
Ω

[δε̇ : Ce : [ε− εp]] dV −
∫
Ω

ρ0δu̇ · f dV −
∫

Γt∗

δu̇ · t∗ dA= 0, (11)

∫
Ω

[δε̇p : Ce : [εp − ε] + δε̇p : σ] dV = 0, (12)

∫
Ω

[
δσ : ε̇p − γδσ :

∂f(σ)

∂σ

]
dV =.0, (13)

∫
Ω

f(σ) [δγ − γ] dV ≤ 0, (14)

with δγ ≥ 0, γ ≥ 0 and dev (σ) 6= 0. If dev (σ) = 0 holds the Lagrange multiplier
γ is simply set to zero. Analyzing equations (11)-(14) demonstrates that within this
variational multifield approach the balance of linear momentum, the material laws and
the yield function are all formulated in a weak sense. Hence, the displacement field,
the stresses, the plastic strains and the Lagrange multiplier are considered as unknown
variables which have to be determined. For elastoviscoplasticity the dissipational potential
is slightly modified compared to the elastoplastic case by introducing a penalization term,
cf. [14]. Thus, problem (10) is recast into

stat
u̇,ε̇p,σ

P (u̇, ε̇p,σ), (15)

yielding∫
Ω

ρ0δu̇ · ü dV +

∫
Ω

δε̇ : Ce : [ε− εp] dV −
∫
Ω

ρ0 δu̇ · f dV −
∫

Γt∗

δu̇ · t∗ dA= 0, (16)

∫
Ω

[δε̇p : Ce : [εp − ε] + δε̇p : σ] dV= 0, (17)

∫
Ω

[
δσ : ε̇p − δσ :

1

χ
〈f(σ)〉∂f(σ)

∂σ

]
dV= 0. (18)
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Therein, the Lagrange multiplier is no primary variable any more and the variational
inequality embodied by the yield function is obsolete. Thus, elastoviscoplasticity and
elastoplasticity are described by distinct weak forms. But nonetheless within both for-
mulations, the material laws are elevated on structural level and all sorts of equations
containing time derivatives can be temporally discretized simultaneously. The price how-
ever is, that a large system of equations has to be solved and in the case of elastoplasticity
a variational inequality has to be accounted for.

3.2 Spatial discretization

The next step within the variational solution procedure is, the spatial discretization of
the weak forms. Therefore, the distinct primary variables are approximated by a number
of nodal values and shape functions depending on the natural coordinates. Therefore, two
types of approximations are used. While the displacement field is interpolated continu-
ously using Lagrange shape functions N(ξ), the stress tensor, the plastic strains and
the Lagrange multiplier are approximated discontinuously using shape functions N̄(ξ).
Hence, the latter quantities can perform jumps across element boundaries, which is not
possible in the continuous case, cf. [16]. Inserting these terms leads to a semidiscrete
form, [9, 23].

3.3 Linearization

Due to the behavior of the yield function, a nonlinear system of equations has to be
taken into account. Furthermore, in the elastoplastic case even variational inequalities
pertain. The solution procedure, therefore, consists of two branches. On all equalities a
classical Newton-Raphson scheme is applied. It is based on a Taylor series expansion,
which is aborted after the linear term. Thus, the semidiscrete weak form is linearized,
exploiting the Gâteaux derivative, cf. [8, 21]. For the inequalities a semi-smooth New-
ton process is carried out. Therein, the included inequality is first transformed into an
equality by means of a nonlinear complementarity function, afterwards, a special kind of
linearization is performed, introducing an active set strategy. The result is the following
system of equations on structural level

M̄∆ẅ + D̄∆ẇ + K̄∆w = R̄
∗ − R̄, (19)

γi,k+1 = 0 ∀i ∈ Ik, (20)

Ak+1:={i|γei,k+1 + c r̄ei,k+1
γ > 0}, (21)

Ik+1:={i|γei,k+1 + c r̄ei,k+1
γ ≤ 0}. (22)

with the suitable tangent matrices M̄, D̄, K̄, load vectors R̄, R̄
∗

and active as well as
inactive sets A, I, cf. [15]. The variable w represents the vector of primary variables,
consisting of the displacements, the plastic strains, the stresses and the Lagrange mul-
tiplier.
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Within the elastoviscoplastic formulation only variational equalities prevail, hence, in
that case the application of a classical Newton-Raphson scheme is sufficient and results
in a similar weak form as depicted in equation (19), but equations (20)-(22) are obsolete.

3.4 Time discretization

Before the systems of equations (19) as well as (20)-(22) can be solved, a temporal
discretization has to be carried out. In this paper this is done considering stiffly accurate
diagonal implicit Runge-Kutta schemes. The idea behind this class of methods is to
divide the time period of interest [t0, T ] into time intervals [tn, tn+1] with the time step
size ∆t. Moreover, each time step contains s stages at tni = tn + ci∆t for i = 1, ..., s,
whereby the last stage is identical to the end of the time step tns = tn+1. The parameters
ci are Runge-Kutta coefficients. Besides it is assumed, that at all stages equation (19)
as well as (20)-(22) have to hold. The stage variables are then approximated using special
quadrature rules and weighting factors aij, cf. [5, 6].

ẇni = ẇn + ∆t
i−1∑
j=1

aijẅnj + ∆taiiẅni = Ẇ + ∆taiiẅni (23)

wni =wn + ∆t
i−1∑
j=1

aijẇnj + ∆taiiẇni = W + ∆taiiẇni (24)

For the stage increments equations (23)-(24) are adapted, too. The result is the fully
discretized and linearized form[

1

[aii∆t]
2M̄ni +

1

[aii∆t]
D̄ni + K̄ni

]
∆wni = R̄

∗
ni − R̄ni, (25)

γi,k+1
ni = 0 ∀i ∈ Ik, (26)

Ak+1:={i|γei,k+1
ni + c r̄ei,k+1

γ,ni > 0}, (27)

Ik+1:={i|γei,k+1
ni + c r̄ei,k+1

γ,ni ≤ 0}, (28)

so that in each iteration the primary variable vector w and its time derivatives can be
determined. In the elastoplastic case, the active and inactive sets are updated additionally.
For elastoviscoplasticity equations (26)-(28) are neglected.

4 DYNAMIC BENCHMARK EXAMPLE

In order to show the functionality of the multifield approach and to evaluate the behav-
ior of the time discretization scheme a small dynamic example is calculated. It is motivated
by the integrated thermomechanical forming process depicted in Figure 1. Due to the
shaft’s rotational symmetry a polar coordinate system with the basis vector gR in radial,
gZ in axial and gΦ in tangential direction is introduced, see Figure 2. Additionally, a
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ûZ [mm]

−2

−1

0

1

2
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Figure 2: (a) Sketch of the steel shaft and its dimensioning (b) Simulation parameter, (c) Prescribed
displacement ûZ

displacement based load ûZ pointing in the shaft’s longitudinal direction gZ is assumed.
Hence, an arbitrary meridian half plane with Φ = const. can be taken into account to
describe the steel shaft’s properties and the displacement field is solely characterized by
its radial and axial components u(X) = [uR, uZ ]. Further necessary model and simula-
tion parameters are also depicted in Figure 2. The spatial discretization is based on two
finite elements in gZ- and one finite element in gR-direction. For time discretization a
third order accurate diagonally implicit Runge-Kutta method (DIRK (3)) is applied,
cf. [6]. In order to characterize the behavior of the time integration scheme, two cases are
studied for the elastoplastic and the elastoviscoplastic material model. On the one hand
a yield stress of σy = 900N/mm2 is chosen to represent steel, on the other hand a yield
stress of σy = 0.01N/mm2 is considered, leading to an instantaneous yielding. Using this
election the influence of the elasto(visco)plastic switching point can be depicted and the
effect of the viscous regularization can be demonstrated, if the time discretization error
and the order of convergence are examined.

5 TIME DISCRETIZATION ERROR ANALYSIS

The quality of a considered time integration scheme is determined by its error behavior
and its order of convergence. Since in general no analytical solutions are available, the
former has to be estimated. Therefore, a variety of methods exists. In this paper the local
and the global h-error

eh,n+1 ≈ w
∆t/2
n+1 (wn)−wn+1(wn) eglob

h,n+1 ≈ w
∆t/16
n+1 (w0)−wn+1(w0) (29)

are evaluated. Their definition is based on the idea, that with decreasing time step size
the error decreases. The estimation is thus founded on numerical comparative solutions
w

∆t/n
n+1 computed by using the time step size ∆t reduced by a factor two and a factor 16,

cf. [3]. A further difference between both error definitions in (29) is, that for the global

7
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h-error only the initial condition is passed, while for the local h-error the results of various
intermediate time steps are transferred characterizing the error only within one single time
step. Additionally, error characterizing quantities are established to enable the evaluation
of the time integration error and the order of convergence for a given problem. In order
to be able to make a statement regarding the total time discretization error of distinct
unknowns, the norm of the respective error vector is evaluated for various time step sizes
at common points in time. Correspondingly, the following quantity is established

eh,n+1 = ‖eh,n+1‖ . (30)

To estimate the order of convergence numerically, a measure has to be defined to charac-
terize the temporal evolution of the error estimates in (30), so that a relation to a fixed
time step size can be established. For this purpose

qmean
h = mean (linear fit (log(∆t), log (eh,n+1(∆t)))) . (31)

is considered. The idea behind the approach is to calculate the respective error estimator
for a variety of time step sizes, install a link between the latter and the error characterizing
value in (30), identify the resulting slope by a linear regression in the logarithmic space and
determine the order of convergence by averaging, cf. [1]. This procedure is applied to the
error estimates obtained by calculating the dynamic examples introduced in section 4.
In Figure 3 the error curves for the displacement field, the stresses and the plastic
strains are depicted for four distinct time step sizes. Thereby, Figure 3 (a)-(c) represent
the results for the elastoviscoplastic material formulation using the multifield approach
(multi visco) assuming a yield stress of σy = 900N/mm2. Figure 3 (d)-(f) demonstrates
the corresponding results for the elastoplastic approach (multi). The error curves for
the elastoviscoplastic (multi visco) and the elastoplastic model (multi) with yield stress
σy = 0.01N/mm2 are shown in Figure 3 (g)-(i) and Figure 3 (k)-(m), respectively.
All results have in common, that with decreasing time step size the error gets smaller.
Furthermore, the average error of the stress field is higher than the one of the plastic strains
and of the displacement field. Comparing the elastoviscoplastic to the elastoplastic curves,
illustrates only small differences for the displacement field while bigger discrepancies are
perceptible for the other two variables. Additionally, if the corresponding plots with
distinct yield stresses are opposed, it can be seen that the curves for σy = 0.01N/mm2 are
much smoother than those obtained with σy = 900N/mm2. However, for small time step
sizes the former show oscillations, which may be attributed to the numerically challenging
yield stress close to zero. The orders of convergence associated to the plots in Figure 3 are
summarized in Table 1. While the order of convergence for the elastoplastic model (multi)
determined by the local error estimator lies around the theoretically possible order of
three for all analyzed field variables, in the elastoviscoplastic case (multi visco) the plastic
strains and the stresses suffer from an order reduction. This behavior is also observed
for the orders of convergence if a yield stress of σy = 0.01N/mm2 is taken into account.
However, if the global error estimator is exploited to calculate the order of convergence
distinct results are obtained. For the elastoplastic (multi) and the elastoviscoplastic model
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Figure 3: Local time discretization error of the h-method for the displacement, the (visco)plastic
strain and the stress field: (a)-(c) DIRK(3) multi visco, DIRK(3) multi, (g)-(i) DIRK(3) multi visco
σy = 0.01N/mm2 , (k)-(m) DIRK(3) multi σy = 0.01N/mm2
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(multi visco) with a yield stress of σy = 900N/mm2 all field variables suffer from an
order reduction, while the models with a yield stress of σy = 0.01N/mm2 pertain their
theoretical order of three. From these observations two conclusions can be drawn. The
viscous regularization seems to have no positive effect on the time discretization error.
Moreover, the existence of an elasto(visco)plastic switching point influences the order of
convergence. The positive impact on the globally determined order of convergence was
already shown in [1]. The deterioration of the locally estimated order of convergence seems
to be linked to the numerical difficulties associated to the yield stress being close to zero,
since the oscillations occur at small time step sizes. Apart from the multifield approach
also the conventional access towards elastoplasticity (con) and elastoviscoplasticity (con
visco) following the implementation in [17] is simulated. Therein, almost identical results
are obtained. The corresponding orders of convergence are depicted in Table 1, too.
Hence, the order reduction is not associated to the multifield approach, although it does
also not cure it.

Table 1: Estimation of the order of convergence of various time integrators for distinct fields and different
error measurements within elasto(visco)plasticity

qh(u) qh(εp) qh(σ) qglob
h (u) qglob

h (εp) qglob
h (σ)

DIRK(3) con 2.99 2.94 2.99 2.26 2.21 2.53

DIRK(3) multi 2.99 2.94 2.99 2.26 2.17 2.53

DIRK(3) con σy = 0.01N/mm2 2.99 2.44 2.53 3.06 3.06 3.06

DIRK(3) multi σy = 0.01N/mm2 2.99 2.50 2.58 3.06 3.06 3.06

DIRK(3) con visco 2.99 2.17 2.51 2.28 2.23 2.55

DIRK(3) multi visco 3.00 2.18 2.52 2.38 2.32 2.53

DIRK(3) con visco σy = 0.01N/mm2 2.99 2.54 2.68 3.06 3.06 3.06

DIRK(3) multi visco σy = 0.01N/mm2 2.99 2.55 2.69 3.06 3.06 3.06

6 CONCLUSION AND OUTLOOK

In this paper a variational multifield approach towards elasto(visco)plasticity and its
numerical implementation involving stiffly accurate diagonally implicit Runge-Kutta
schemes is presented. It is based on extending the principle of virtual power to dissipative
systems and thus arranging that the material laws and the balance of linear momentum
are on the same solution level. The motivation thereby is founded on the necessity to
use higher order time integration schemes in the context of elasto(visco)plasticity, which
is drastically simplified with this multifield approach. To demonstrate its functionality
distinct dynamic examples are simulated. Additionally, the time discretization error of a
specific third order Runge-Kutta scheme is analyzed to compare different estimation
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techniques and to show the influence of the elasto(visco)plastic switching point. The order
of convergence obtained by the local error is significantly influenced by the choice of yield
stress and the material properties. For the elastoplastic case a yield stress reduction leads
to a reduction of the order of convergence for the stress and the plastic strain field. In the
elastoviscoplastic case a completely contrary behavior is observed. For the displacement
field identical orders are obtained for all cases. The globally estimated orders of conver-
gence of the elastoplastic case are similar to those of the elastoviscoplastic case. Evaluating
the examples where no elasto(visco)plastic switching point exists, demonstrates that for
the global error theoretical orders of convergence of three are obtained. Hence, the obser-
vations of [1] can be testified. Thus, the creation and implementation of an appropriate
switching point detection strategy is necessary to obtain higher orders of convergence in
elasto(visco)plasticity. Therefore, also the usage of adaptive schemes should be investi-
gated. Another open question is, why the viscous regularization did not improve the order
of convergence. A similar behavior was already demonstrated in [7]. Additionally, the
discrepancies between local and global error estimators have to be examined. In general
their behavior should be similar, following [20], which is, within this examples, not the
case.
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