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Abstract. This paper presents Fourier and wavelet methods applied to data derived
from Positron Emission Particle Tracking (PEPT) experiments conducted at the iThemba
LABS outside Cape Town in South Africa. The iThemba LABS runs a specialized cy-
clotron which produces positrons for use in medical PET and industrial-related PEPT
research. The methods are applied as an aid in developing a computational procedure
for determining the value of the circulation rates of the charge found in typical industrial
tumbling mills. The circulation rate values are obtained as fundamental harmonics from
power spectral plots using Fourier analysis. The wavelet method is applied to identify
and remove noise from the data in order to improve on the computationally determined
value of the circulation rate. For the analysis presented herein, parameters are obtained
directly from the flow dynamics of the PEPT tracer particle.

1 INTRODUCTION

The particles in a tumbling mill can undergo various kinds of motion including spin,
rotational and translational. Translational motion, also known as material transport
defines motion along the axis of the mill between entry and discharge. Due to the mill
rotational motion, however, most charge motion is in a plane at right angles to this axis
and this plane is important in the description of grinding kinetics. For motion in this
plane the charge is said to circulate at a rate known as its circulation rate. In a previous
paper we established a model for the experimental determination of the circulation rate
of the charge in these mills which was tested using data derived from Positron Emission
Particle Tracking (PEPT) experiments [1]. In this paper we discuss a computational
methodology for determining circulation rate using Fourier and Wavelet techniques.
According to Powell and Nurick [2], the motion of a tumbling mill is translated into
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Figure 1: A typical circulation path followed by the ball, showing the various distinct zones

mechanical energy of the content of the mill, known as the charge, in the form of rotational
motion. This charge motion arises from the mill internal design and mill speed and thus
determines the power draft, stressing intensity and stressing probability, mixing kinetics
inside the charge, material transport and the performance of a mill [3]. The subsequent
work done on the charge can increase its potential energy, linear kinetic energy, rotational
kinetic energy and temperature.
In a previous paper [1], it was established a model for determining the circulation rate
of the charge in a tumbling mill relating it to both physical and geometric parameters
of the mill operation. Physical parameters of typical tumbling mill operations include
the mill speed, mill load fraction and internal friction while geometric parameters may
include those of the center of circulation (CoC), the center of mass (CoM), the angle
of repose, and the toe and shoulder angles. These features of tumbling mill operations
have been well investigated [4] [5] [6] [7] [8] [9] [10] [1]. In order to fully appreciate the
relationship between circulation rates and tumbling mill operating parameters we may
need to divide the circulation plane of the charge into a number of distinct zones as
proposed by Govender and Powell [11] [10], (see figure 1).

1. The circular path in the en-masse region, where the ball is lifted up by the rotary
motion of the mill - from A to B. This zone is used to calculate the slip between
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layers of charge.

2. The shoulder zone - B to C - where the ball falls away from the mill circular path,
passes through the maximum height S, and then begins to fall down towards the
toe region.

3. Cascading/cataracting zone - from C to T - where the ball tumbles down the other
descending balls (cascading) or falls freely (cataracting), until it impacts in the toe
region at T.

4. The toe region - T to A - where the ball impacts on the charge and is drawn into
the rotary motion of the mill. This is an active region of the charge, and is where
the interactive forces are greatest.

These key zones define the trajectory of a circulating particle which is influenced mostly
by the mill operating physical and geometric parameters.

1.1 Review of Fourier and Wavelet Methods

Fourier and wavelet methods are powerful and fascinating branches of mathematics.
In the analysis of complex functions one may sometimes need to make an educated guess
about the identity of a function or the meaning of a result [12] [13]. Until recently these
branches of mathematics had very little practical application. With the continued appli-
cation of computers to mathematics both methods have emerged as central to many parts
of science and technology. These methods have found applications in areas such as pre-
dicting ocean tides, analysis of noisy signals and mostly in the analysis of periodic data.
We found their ability to analyse periodic data very useful in the discussion of data ob-
tained from Positron Emission Particle Tracking (PEPT) experiments. The methods were
therefore applied to our experimental data with reasonable degree of success. But before
we develop our models we take a look at the basic concepts governing these methods.

1.1.1 Forward Transforms

Transforming a digital signal from time to frequency representation is always required in
signal processing. The Fourier transform is used to convert signal from time to frequency
domain by integrating over its time axis (see equation (1))[12]. It is an efficient method
when the frequency bands of signals and noises are distinctives, the low-pass filters will
reduce the noises, however it produces an affected signal output.

F (ω) =
1

2π

∫ ∞
−∞

f(t)e−iωtdt (1)

This last decade, wavelet has become a powerful denoising tool. It overcomes the
shortages of Fourier transform by processing simultaneaously the time domain (of finite
length) and frequency domain (of finite bandwidth) [13]. From equation (2) as dilation
and translation of the mother wavelet occurs, very low frequency components can be
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observed at large s values, while very high frequency components can be located precisely
at small s.

Wf(s, u) =

∫ ∞
−∞

f(t)
1√
s
ψ∗(

t− u
s

)dt (2)

1.1.2 Inverse Transforms

The fourier transform F(ω) produces the fequency domain function with real and imag-
inary parts while the inverse Fourier Transform f(t) is used to recover a function from its
Fourier transform. Knowing the frequencies and phases one can reconstruct the original
signal. In many situations the Fourier transform is apply in one end and the Inverse
Fourier transform to the other end. In this subsection, the inverse Fourier Transform f(t)
is illustrated in equation (3).

f(t) =
1

2π

∫ ∞
−∞

F (ω)eiωtdw (3)

The wavelet transform is a useful and well known signal processing technique, once we
get the wavelet transform we can reconstruct the original signal by computing the inverse
wavelet transform as shown in equation (4).

f(t) =
1

Cψ

∫ ∞
0

∫ ∞
−∞

wf(s, u)
1√
s
ψ(
t− u
s

)du
ds

s2
(4)

Where:

Cψ =

∫ ∞
0

|Ψ(ω)|2

ω
dω <∞ (5)

1.1.3 Fast Discrete Transforms

In the analysis of tumbling mill data obtained from PEPT experiments, sampling is
necessary, meaning that a discrete formulation of both the Fourier and Wavelet transforms
were necessary. In both cases the discrete formulation can be done in a more efficient
manner by the use of the Fast Transform Algorithm (FTA). Hence, in the place of the
Discrete Fourier Transforms (DFT) the Fast Fourier Transform (FFT) can be used and in
the case of the Discrete Wavelet Transform (DWT) the Fast Wavelet Transform (FWT)
can be employed. We shall show later how we successfully applied these two methods to
our tumbling mill scenario to compute a free noise circulation rate.

2 Methodology

Todo............
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(a) (b)

Figure 2: .....

3 Application of Fourier and Wavelet Methods to PEPT Data

We developed FFT and FWT and used them to analyze tumbling mill data obtained
from our PEPT experiment conducted the iThemba LABS. From this we have developed
a computational scheme for determining circulation rate of the charge in tumbling mills.
The computational methodology presented herein compares well with experimental results
and further validates our circulation rate model established in a previous paper [1].

3.1 Applying the Fourier Methods

Using the MATLAB FFT function, the DFT of the radial positions R(n) could be
found. The power spectrum at various mill speeds is obtained from equation (8) and
plotted in figures (3) and (4).

Some important inferences that can be drawn from the plots in figures (3) and (4) are:

• In figure (3a), which shows the mill running at 20% of the mill critical speed (the
lowest speed used in the experiments), an initial peak appears at start-up. Since the
plots are normalized by mill speed this peak represents the fundamental frequency
of the mill. The charge and mill are seen to move at the same velocity indicating
that this fundamental frequency must be equal to unity (ω0 = 1.0) .

• Once the charge starts to circulate a peak or cluster of peaks appear to the right
of this fundamental frequency. This peak is the fundamental harmonic from which
the circulation rate of that experimental run can be read. For instance at a mill
rotational speed of 35% of the critical speed, the circulation rate read off from the
fundamental harmonic in figure (3b) is 1.815 rev/s.

• From figures (3), and (4) it can be seen that there is a gradual shift in the location
of the peak (or cluster of peaks) towards the fundamental frequency as mill speed is
increased. This can be explained by the fact that the trajectory path travelled by

5



A. Halidou, D.V.V. Kallon, A. Nel, I. Govender and A. N. Mainza

a particle in one circulation, as illustrated in figure 1, is considerably shorter than
the mill circumference at lower speeds but this ratio reduces at higher speeds [2]
[10] [1]. Hence at lower speeds the circulation rate of the charge in a tumbling mill
is high. At higher speeds, when the charge trajectories are longer, the circulation
rate approaches the fundamental frequency of (ω0 = 1.0) .

• These harmonics (circulation rates) are plotted as a function of mill speed in figure
5. An empirical line is fitted to the data with a high coefficient of determination
(R2 = 0.98326). From this plot a linear relationship between the fundamental har-
monic (circulation rate) and mill speed is observed where the former decreases near
linearly with increasing the later.

• In figure (4b), it can be observed that higher order harmonics may sometimes occur
in the spectral plots. These may represent higher order charge circulation rates in the
mill and could be as a result of unsteady flows nearer to the end of the experimental
run. However there may be better/more physical interpretations of this occurrence
and its consequence for mill performance needs to be further investigated. For this
reason we developed and applied the wavelet methods to tumbling mills using our
PEPT data.

a b c

Figure 3: Power spectral plots showing circulation rates obtained from the first peak or an average of
closer peaks. (a) Circulation rate at 20% mill speedand 40% mill load; (b) Circulation rate at 35% mill
speed and 40% mill load; (c)Circulation rate at 50% mill speed and 40% mill load

a b c

Figure 4: Power spectral plots showing circulation rates obtained from the first peak or an average of
closer peaks. (a) Circulation rate at 65% mill speedand 40% mill load; (b) Circulation rate at 75% mill
speed and 40% mill load; (c)Circulation rate at 90% mill speed and 40% mill load
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Figure 5: Plot of power spectral peaks (harmonics or circulation rates) as a function of mill speed.

3.2 Applying the Wavelet Methods to PEPT Data

We used the Daubechies wavelet family to obtain the approximation signal and details
of the PEPT tracer particle kinematic distribution within the opaque grinding environ-
ment of the tumbling mill. The Daubechies wavelets are a family of orthogonal wavelets
defining a discrete wavelet transform and for some given support they are characterized by
a maximal number of vanishing moments [13]. Suppose the scaling and wavelet functions
are given as Daubechies, lets say the basis is known. We approximate a discrete signal in
I2 (Z) by equation (9):

f [n] =
1√
M

∑
k

Wφ[j0, k]φj0,k[n] +
1√
M

∞∑
j=j0

∑
k

Wψ[j, k]ψj,k[n] (6)

Here

f [n],φj0,k[n]&ψj,k[n] (7)

These are discrete functions defined in [0,M − 1], totaling M points. We note that
the sets in equations (11) and (12) are orthogonal to each other. We take the inner
product to obtain the wavelet coefficient as in equation (13). Hence equation (13) is the
approximation coefficient and equation (14) is the wavelet coefficient and from equation
(15) we obtain the detailed coefficient shown in equation (16).

{φj0,k[n]}k∈Z (8)

{ψj,k[n]}(j,k)∈Z2,j≥j0 (9)

Wφ[j0, k] =
1√
M

∑
n

f [n]φj0,k[n] (10)

Wψ[j, k] =
1√
M

∑
n

f [n]ψj,k[n]j ≥ j0 (11)
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Figure 6: Approximation and details of PEPT data using Daubechies wavelet(Left: Approximation of
PEPT data, Right: The details of the PEPT data)

φj,k[n] = 2j/2φ[2jn− k] =
∑
n′

hφ[n′]
√

2φ[2(2jn− k)− n′] (12)

Let n′ = m− 2K, then:

φj,k[n] =
∑
m

hφ[m− 2k]
√

2φ[2j+1n−m] (13)

On applying this approximation model to our PEPT data we obtained the graph to the
left of figure (6). In theory the approximation graph should give a straight proportional
line, however, from the plot we note significant instability in the signal. This instability
arises from noise in the data which affects the performance of the computerized analysis
of tumbling mill circulation rate: poor experimental design and errors in the experimental
procedure; noise during data acquisition; external noises from the environment all add
to the noise in the signal. This noise can be observed in the discrete shifts in the plots
towards higher regions giving a poor approximation of the signal (left of figure 6). The
noise contributes to reducing the performance of visual and computerised analysis of the
PEPT data.

In the detail plot (shown to the right of figure 6) the frequency components are obtained
with their energy magnitudes plotted on the vertical axis. This plot reveals that there
exist high frequency components in the data obtained from a typical PEPT experiment.
It can be further noted that the positions of these high frequency components correspond
to the locations of the discrete shifts in the approximation plots to the left of figure
6. These high frequency components are, therefore, responsible for the instability in the
signal. For lengthy periods the signal appears stable, but the high energy frequencies
create noise in the signal. This noise exists in only small segments of the signal around
the region of the discrete shifts in the approximation plot. The noise needs to be removed
by applying denoising using wavelet methods. Denoising is a process of removing the
noisy segments (high frequency components) of a signal while retaining the quality of the
original signal.
An algorithm was developed for processing the PEPT data in matlab and was successfully
applied to denoise the PEPT data. But before applying denoising we examine whether
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Figure 7: The X, Y plots of kinematic distribution of the tracer from PEPT experiments

thresholding is needed or not. Applying thresholding at some point in the data discards
a portion of the details that exceeds a certain predetermined limit. In figure (7) we
examine the X, Y plots of kinematic flow of the PEPT tracer particle from the tumbling
mill experiments. The plots reveal that there exist discrete gaps in the particle flow
patterns in the grinding environment of the tumbling mill. The occurrence of these gaps
indicates erratic motions of the tracer particle giving rise to high frequency components
in the signal.

In the case of PEPT data the noise attributed to the data is found to be non-stationary
so an assumption has to be made to fix the noise as stationary in order to apply a
reasonable denoising model. The general wavelet denoising model is given in equation
(17). In this model, the noisy signal y (i) depends on the noise free signal x (i) and some
independent normal random variables ε (i). In equation (17), represents the intensity of
the noise in y (i). Thus the approach models noise as high frequency signals superimposed
on the original signal.

y(i) = x(i) + σε(i), i = 1, 2,..., n− 1 (14)

Applying denoising to the PEPT Data using the Daubechies wavelet method we obtained
the plot in figure (8). Denoising based on the Daubechies wavelet is a technique that
preserves some part of the high frequencies that are nonetheless relevant to the overall
frequency representation of the signal and provide important information about the signal.
Using the inverse wavelet transform we obtain a denoised signal to which the Fourier
scheme earlier developed is reapplied to produce the denoised plot of the circulation rate
of the charge in the tumbling mill as shown at the bottom of figure (8). A close comparison
of the plots before denoising (figure 8a) and after denoising (figure 8b) shows that after
removing some of the high frequency components through denoising the position of the
harmonic shifts thereby increasing the value of the circulation rate. Thus the denoising
process improves the circulation rate determination procedure and shifts its value towards
an acceptable and reasonable magnitude.

4 CONCLUSIONS

An investigation was conducted into the causes of the failure of the Fourier scheme
developed for the computational determination of the value of the circulation rate of
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(a) before denoissing (b) after denoising

Figure 8: Denoising

tumbling charge using data derived from PEPT experiments. It was observed that the
main cause was the occurrence of high frequency components in the signal generated
from this data. These high frequency components manifest themself as noise during data
acquisition or pre-processing of the data. The problem may also be caused by a raft of
other factors which may include but not limited to the following:

• Poorly designed experiments,

• Experimental errors,

• Parameterization of sinogram data,

• Data sampling method,

• Triangulation methods,

• Etc.

Because the sources of noise in the data are not fully known we conclude that the
problem must be fixed at the pre-experimental and experimental stages. Noise in most
signals may be insignificant and negligible; however, when the noise is seen as corrupt-
ing the signal in significant ways it is best that it be removed before further meaningful
analysis can be carried out. In this work we observed that the noise in the PEPT data
has no frequency selectivity, is nonlinear and relatively dispersed and as such cannot lend
itself to Additive White Gaussian Noise controls. And until the source of the noise in the
data is well placed one cannot assume a Poison/Laplace noise either. As a consequence a
tractable mathematical model that could provide insight into the underlying behavior of
the data could not be developed at this stage.

It may be possible to implement a Signal-to-Noise Improvement Ratio at the instru-
mentation stage based on discrete wavelet transforms. A Signal-to-Noise Ratio (SNR) is
a ratio of the power of a signal to that of the power of the noise in the signal. The higher
the ratio the more useful information one can obtain from the signal. We recommend that
further experiments be conducted with a view to reducing experimental errors, removal
of noise in the data and an overall signal-to-noise ratio improvement model should be
implemented.
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