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Abstract. This work is in the context of the mitigation of the consequences of a large-
break loss of coolant accident in a Pressurized Water Reactor. To minimize the flow
leaving the vessel and prevent or delay the uncovering of the core, CEA has devised a
device, named in-vessel flow limiter, limiting the flow of fluid from the vessel to the break.
The goal is to interfere as little as possible with the nominal operation flow and maximize
the fluid retained in the event of this kind of accident.
In order to quickly perform a series of 3D-CFD simulations to optimize this device, it
is imperative to have a simulation tool that provides sufficiently accurate results in a
reasonable time. For this goal, an immersed boundary condition approach is retained.
The solid obstacles constituted by the fins of the device are not extruded from the fluid
domain, but included in the calculation domain itself. Their presence is considered by a
first-order in space local Direct Forcing term using a penalty approach.
Through 3D/1D up-scaling of CFD global quantities, local pressure-drop coefficients,
induced by the in-vessel flow limiter, can be provided to Thermal-Hydraulic system safety
codes. It allows safety studies of the thermal-hydraulic system taking into account the
in-vessel flow limiter presence in a more realistic way.

1 INTRODUCTION

The context of this work is set in the domain of Generation III nuclear power plants.
There are the innovative designs that are under construction or still in design phase [1].
More specifically, we focused on the light-water Pressurized Water Reactors (PWRs),
which are the main type of reactors built and exploited in France. Nowadays passive
safety systems are more and more included in the nuclear-reactor safety strategy to mit-
igate design basis accidents. A passive safety system is a system that activates itself
without the need of mechanical or electrical actuation.
At CEA, some studies on passive safety systems have been done in the past years, notably
for the in-vessel flow limiter (hydraulic diode) patented by the CEA [2] designed to limit
the amount of water lost during the short-term sequence of a Large-Break (LB) Loss Of
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Figure 1: Scheme of in-vessel flow limiters (hydraulic diode) located between the cold legs and the
downcomer [2].

Coolant Accident (LOCA), cf. Fig. 1. The goal is to interfere as little as possible with
the nominal operation flow and maximize the fluid retained in the event of this kind of
accident.

Numerical investigations of the benefices induced by the in-vessel flow limiter during
LOCA transients have been done using thermal-hydraulic system safety codes. But, the
relevance of these system-scale studies depends on the level of realism of the data in-
troduced to take into account the hydraulic diodes. In order to take into account the
large-scale effect of hydraulic diodes in safety-system studies, we need information com-
ing from small-scale experimental or numerical experiments. For instance, results from
3D Computational Fluid Dynamic (CFD) simulations can be used to up-scale relevant
characteristics as the global pressure drop induced by the hydraulic diode.
Moreover, CFD studies can be involved in the optimization process of the flow-limiter ge-
ometry to minimize the global pressure drop during nominal operations and to maximize
it during a cold-leg LB-LOCA. This optimization process usually needed a big number of
simulations. But, as many geometric scales are presented at the same time (typically sev-
eral meters for the downcomer radial scale and one centimeter for the fin thickness), a CFD
simulation of the two-phase flow inside the flow-limiter can be time consuming. Instead
of this conventional approach (i.e. body-fitted approach), we are motivated by fictitious
domain approach [3, 4] allowing a less precise but faster estimation of the pressure-drop
coefficient. Following this way, we consider simulations over a full computational domain
including the in-vessel flow-limiter fins and re-introduce their presence adding local ex-
ternal forces on the immersed boundaries. Moreover, a homogeneous relaxed equilibrium
model of a liquid-vapour mixture [5] can be considered. For same space discretization,
this kind of three-balance-equation model generally run faster than a six-balance-equation
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model. Once a particular geometry exhibited as a good candidate, a reduced number of
body-fitted CFD computations can be done to refine the design.

In this paper, we present a methodology concerning the design of a fast-running two-
phase CFD model of the in-vessel flow-limiter device illustrated by CFD results. The
numerical/experimental validation of this simulation tool is not the goal of this paper
and only brief elements of validation are given here. The paper is structured as follow.
The two-phase fluid CFD model and the first-order in space immersed boundary models
are first presented in Sections 2 and 3. Then, the in-vessel flow limiter study, with the
GENEPI code as CFD tool, is discussed in Section 4. Results provide a range of values
that may be used in input of safety-system codes. Finally, some words concerning the
perspectives of this work are given in Section 5.

2 The two-phase CFD model

The considered two-phase CFD model is the GENEPI one [6, 7], designed for the steam-
generator two-phase flow steady-state 3D computations through the resolution of three
balance equations for a water liquid/steam mixture. It is based on a homogeneous relaxed
equilibrium model with thermodynamic equilibrium of the two phases. But closure laws
take into account the liquid/steam momentum disequilibrium. This code incorporates the
possibility to model thin no-penetration obstacles using Immersed Boundary Conditions
(IBCs) [8].
Provided that the following assumptions hold: (i) surface tension, viscous and turbu-
lent dissipation are neglected and pressure terms are neglected in the enthalpy balance
equation, (ii) steam and liquid have same pressure, (iii) an eddy viscosity model is consid-
ered, one obtains for the mixture description of the two-phase flows the following mass,
momentum and enthalpy balance equations:

∇.G = 0, (1)

ρ∂tV + G. ¯̄∇V + ¯̄∇.(x(1− x)ρVR ⊗VR) = ρg −∇P − ¯̄ΛV

+ ¯̄∇.µT ( ¯̄∇V + ¯̄∇TV), (2)

ρ∂tH + G.∇H + ∇.(x(1− x)ρLVR) = ∇.(χT∇H), (3)

with ¯̄Λ the singular-obstacle tensor and VR the relative velocity given by the drift-flux
Lellouche-Zolotar model [9] and based on the Zuber-Findlay approach [10]. The turbulent
dynamic viscosity µT is given by the local scalar Schlichting model [11]:

µT = aS|G|LT (4)

where LT is a characteristic length and aS a coefficient. The turbulent diffusion coefficient
χT for the enthalpy balance equation is defined via the Prandtl number Pr = µT

χT
. The

density ρ, the static quality x and the latent heat L are determined through the equation
of state of the water as a function of the pressure and mixture specific enthalpy. We solve
in H, P and V variables. The time term presence in Eq. (2) allows to search the steady-
state regime through a transient computation of a thermally dilatable fluid, ∇.G = 0, cf.
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Eq. (1). For that, the Chorin-Gresho method [12] (a fractional-step method) is used to
solve the coupled mass-momentum equations. The non linearity are dealt by the Picard
iterative process. The time discretization is based on a semi-implicit Crank-Nicholson
scheme. The spatial discretization is based on the unstructured hexahedral finite elements
(constant pressure by element and tri-linear velocity by node). The physical data ρ,
µT and ¯̄Λ are constant by element. The Streamline Upwind Petrov-Galerkin method is
applied to correct the convective term [13]. A conjugated gradient method, preconditioned
by the diagonal, is used to solve the arising linear systems.
According to the hyperbolic nature of the flow equations, Dirichlet boundary conditions
are used at the inlets of the domain (mass flux and enthalpy) and Neumann boundary
conditions at the outlets (pressure). The other boundaries of the domain are impermeable
walls. Generally, these are considered adiabatic and with no shear stress.

3 The Immersed Boundary Model

In the fictitious domain approach, introduced in the fifties by Hyman [14] and the
Russian’s school [3, 4], the original domain Ω̃ is embedded in a fictitious domain Ω which is
geometrically bigger and generally simpler-shaped. Doing this, some immersed boundary
Σ appears such that Ω = Ω̃∪Σ∪Ωe, where Ωe is the complementary or ’exterior’ domain
(as the fins). The spatial discretization is now performed in Ω, independently of the shape
of the original domain Ω̃. Then, the resolution of the new problem in Ω will be faster and
simpler. The main issue is to enforce the original boundary conditions on the immersed
interface Σ which is non-aligned with the mesh.

3.1 The ISI method

In this work, among the numerous fictitious domain methods (see [8] for a short intro-
duction), we consider an element of the set of Immersed Boundary Methods: the fictitious
domain method with Immersed Spread Interface (ISI) [15, 8]. The fictitious problem to
be solved in Ω is built from the original problem in Ω̃, but an additional term takes into
account the immersed boundary conditions. For velocity Dirichlet boundary conditions,
the singular-obstacle tensor ¯̄Λ of Eq. (2) will play this role. It allows us to take into
account the no-penetration condition of the flow limiter fins in an implicit way during the
first step of the Chorin-Gresho method.
Let us (u,v,w) be the local basis linked to a given obstacle (i.e. fin). The vectors u
and v are tangential to the obstacle and the vector w is normal to the obstacle. For the
element e, we define the singular-obstacle tensor by:

¯̄Λe = ρe
Ae
Ωe

 Λu 0 0
0 Λv 0
0 0 Λw

 (5)

with Ae the measure of this obstacle (area, m2) intercepted by the element e and Ωe

the measure (volume; m3) of this element. Λu, Λv and Λw are the tensor coefficients in,
respectively, the directions u, v and w. Here, we consider no-penetration obstacles in
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the normal direction, Λw = 1/ε with 0 < ε << 1, and slip conditions in the tangential
directions, Λu = Λv = 0.
Immersed interfaces Σ, as the flow-limiter fins, are modeled by a collection of linear plane
surfaces intercepting elements of Ω. In each intercepted element, the measure of the
intercepted surface and the external normal vector are known. As the singular-obstacle
tensor is defined by element, all the nodes belonging to this element are concerned: i.e.
we have a spread interface approximation of Σ.

3.2 Convergence order and elements of validation

As for the L2-penalty methods [3, 16], that the ISI method generalizes, the parameter
ε is known as the penalty parameter. Regardless to the Navier-Stokes solving method,
the theoretical rate of convergence of the penalized solution toward the body-fitted one is
comprised in the range [O(ε1/4);O(ε1)] in L2(Ω) norm [16]. Let us notice that for Dirichlet
boundary conditions and elliptic problems, the theoretical rate of convergence in space of
the Q1-finite element method with non-boundary-fitted meshes is O(h1) in L2(Ω) norm,
with h the space step [17].
As a whole, contributions to the validation of this IB approach can be found in [8] and [18].
On one side, in the context of dilatable two-phase flow elliptic problems, the work men-
tioned in [8] validates the ISI method with respect to body-fitted finite-element compu-
tations and to the JEBC method (an IB method using a finite-volume discretization). A
first-order rate of convergence in space is numerically reached.
On the other side, in the context of incompressible one-phase flow Navier-Stokes equa-

tion, the work mentioned in [18] gives elements of validation for a finite-volume first-order
penalty method very similar to the ISI method. Again, a first-order rate of convergence
in space is numerically reached on the test case of a laminar flow around a static cylinder
of diameter D (Reynolds number = 20). These results are in very good agreement with
those proposed in the literature, cf. Table 1. In a lesser degree, it is also true for our
own GENEPI results using the ISI method (about 10% on the drag coefficient and 30%
on the recirculation length) giving confidence in the ability to catch the magnitude of an
obstacle’s drag coefficient.

Table 1: Hydrodynamic coefficients associated with the problem of steady flow around a static cylinder
of diameter D (Reynolds number 20). B.F.: Body-fitted. Cd: drag coefficient. Lw: recirculation length.
[18] (base) refers to the first-order penalty method of [18]. ISI: 18 cells in the diameter D and ε = 10−5.

GENEPI References [18]
B.F. ISI [18] (base) Ye Choi Taira Linnick Fornberg Tritton

Cd 2.13 2.30 2.06 2.03 2.02 2.06 2.06 2.00 2.09
Lw
D

0.96 1.22 0.93 0.92 0.9 0.94 0.93 0.91 -
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4 CFD studies of the in-vessel flow limiter

This section is devoted to a first insight into the hydraulic of the in-vessel flow limiter
through CFD simulations using the GENEPI code. We have set-up a preliminary de-
sign of the in-vessel flow limiter, cf. Fig. 3. In this preliminary work, we mainly restrict
ourselves to liquid one-phase flows. But it is not a limitation; cf. [19] for illustrations of
simulations with two-phase flows.
For simplicity reason, we do not give attention to the gravitational acceleration term in
the computations (around the flow limiter, gravitational effects are negligible in compar-
ison with the inertial ones during the fast-depressurization phase). As well, the pressure
range considered here is only [40-60] bar. Concerning the turbulence model, cf. Eq (4),
the GENEPI-code standard value for the Schlichting coefficient is aS = 0.047 and the
turbulence characteristic length LT is related to the biggest eddy structures. As refer-
ence, we choose LT ≈ 1 m for the nominal-operation flow direction (azimuth scale in the
down-comer) and LT ≈ 0.3 m for reverse flow direction toward the broken cold leg (≈
radial scale in the down-comer).
As the GENEPI’s turbulence model is quite rough, a parametric study is performed on
the coefficient aS and the turbulence characteristic length LT , cf. Eq (4): aS ∈ {a=0.047,
a/10} and LT ∈ {0.3, 1.0, 2.0}. The value of the penalty parameter is set to ε = 10−5.
We consider that the GENEPI steady state is reached when the relative L2-norm differ-
ence of the variables (pressure, mass flux and enthalpy) between two consecutive time
iterations is less than 5.10−3δt with δt the time step. Usually a CPU time of 5 to 6 hours
is need to reach the steady state on the finest mesh M3. It is compatible with a big
number of simulations needed to optimize the flow limiter geometry.

4.1 Computational domain and meshing

The CFD computational domain Ω is a simplified rectangular geometry of 4.3 m x
4 m x 0.2 m to which was added the broken cold-leg nozzle starting about 1 m before
the down-comer. It extends up to 2 m below the cold-leg axis. Considering a sectorized
down-comer as in Fig. 1, we only model one third of the down-comer, including one cold-
leg entry in the vessel and one hot-leg pipe, cf. Fig. 2. The measures of the computational
domain volume, of the down-comer and the cold-leg nozzle surfaces are equal to 3.8 m3,
0.9 m2 and 0.4 m2 respectively.
For the purpose of a mesh convergence study, three meshes M1, M2 and M3 were built
involving N1 = 6,080, N2 = 48,640 and N3 = 164,160 elements respectively. The mean
space step ranges from 0.2 m (M1) to 0.07 m (M3) and the ratio between two consecutive
space-step indexes is 2.0 (M1 →M2) and 1.5 (M2 →M3).
The flow-limiter fins are modeled by singular-obstacle surfaces through a collection of
plane surfaces, cf. Fig. 3.
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(a) Down-comer surface (green). (b) Cold-leg nozzle surface (green).

Figure 2: Example of the mesh used for the CFD study of the in-vessel flow limiter (mesh M2; 48640
elements). The walls are colored in blue.

(a) Flow limiter meshing.

X

Y

−1.9m

−1.1m

2.1m
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−1.5m

(b) Singular obstacles positioned in the
computational domain (mesh M1; 6,080
elements).

Figure 3: Example of preliminary meshing of the flow limiter.

4.2 Boundary conditions

Slip-wall boundary conditions are considered on the walls, mass flux Qin is imposed
on the in-flow boundary and ad-hoc pressure Pout = 50 bar on the out-flow boundary.
The in-flow and out-flow surfaces are the down-comer and the cold-leg nozzle surfaces
depending on the considered main-flow direction. The inlet mass-flux values are Qin =
4,690 kg/s in nominal-operation condition (default flow direction; in ↔ cold leg and out
↔ downcomer) and Qin= 5,200 kg/s in LB-LOCA condition (reverse flow direction; in
↔ downcomer and out ↔ cold leg).

4.3 Results

All quantitative results concerning the pressure-drop coefficients for the various turbulence-
model coefficients and meshes are grouped in Tab. 2. In this table, the bold-typed tur-
bulence parameters are the reference ones. Also the global pressure-drop coefficients
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computed by GENEPI, with or without in-vessel flow limiter, on the finest mesh M3 are
bold-typed. These can be compared to the global pressure-drop coefficients found in liter-
ature (Borda-Carnot law or Idel’cik). Although the mesh convergence is not fully reached,
the trend of the evolution of the pressure-drop coefficient versus the space-step index is
globally caught.
Figs 4 to 6 present some field distributions concerning the mixture velocity, the mixture

Table 2: Summary of the global pressure-drop coefficients Kgl. The default flow direction is defined as
the nominal-operation flow direction (from the cold leg to the down-comer). The reverse flow direction
is defined as the opposite direction. (*): unsteady computation.

Without limiter With limiter

Flow direction Turbulence KM1 KM2 KM3 KM1 KM2 KM3

Default

a; LT=2 m 2.5
a/10; LT=2 m 0.4

a/10; LT=0.3 m 0.4(∗)

a; LT=0.3 m 0.4 0.3 -0.3 6.2 1.8(∗) 0.7(∗)

a; LT=1.0 m 1.2 0.8 0.1 9.8 3.1(∗) 1.6
Idel’cik [20] Kgl ≈ +0.5

Borda-Carnot (ξ = 1) Kgl ≈ -0.5

Reverse

a; LT=2 m 4.6 4.2

a/10; LT=2 m 4.7(∗) 4.2(∗)

a; LT=0.3 m 4.3(∗) 2.7(∗) 3.6 13.3 5.3 5.4
a; LT=1.0 m 3.9 3.7 3.7 15.9 7.0 6.4

Idel’cik [20] Kgl ≈ 1.2
Borda-Carnot (ξ = 1) Kgl ≈ 1.1

pressure and the local external forces taking into account the flow-limiter fins ¯̄ΛV, cf.
Eq. (2) for the two studied flow configurations (nominal condition and reverse condition).
For the nominal-operation configuration (fluid flowing toward the down-comer), the pres-
sure and velocity distributions are shown in Figs 4(a) and 5(a). The local external-force
distribution is illustrated in Fig. 6(a). The introduction of the flow-limiter device induces
an irregular flow path with the emergence of flow channels between the fins. Also, the
in/out-flow pressure difference is increased in reference to the case without in-vessel flow
limiter: KM3 ∈ [−0.3; +0.1] → [0.7; 1.6], cf.Table 2. Let us notice that, without flow lim-
iter, the range of CF-computed values KM3 ∈ [−0.3; +0.1] is compatible with the Idel’cik
(output of a rectilinear diffuser on a screen) or Borda-Carnot (sudden flow-section expan-
sion) estimation one Kgl ∈ [−0.5; +0.5].

For the reverse-flow configuration (fluid flowing toward the broken cold leg), the pres-
sure and velocity distributions are shown in Figs 4(b) and 5(b). The local external-force
distribution is illustrated in Fig. 6(b). The introduction of the flow-limiter device clearly
increases the fluid vortex at the entry of the broken cold leg and the in/out-flow pressure
drop. The global pressure-drop coefficient is multiplied by almost a factor two in case of
flow limiter: KM3 ∈ [3.6; 3.7] → [5.4; 6.4], cf. Table 2. Obviously the geometry of the fins
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(a) Nominal-operation condition (b) LB-LOCA condition

Figure 4: Pressure; mesh M3 (164,160 elements); (aS = a;LT = 0.3 m). Pressure iso-values ranges from
4.8 to 5.2 bar.

(a) Nominal-operation condition (b) LB-LOCA condition

Figure 5: Velocity; mesh M3 (164,160 elements); (aS = a;LT = 0.3 m).

has to be optimized to enhance this effect while limiting the flow-limiter impact during
nominal operations.
Contrary to the nominal-operation case, the range of CF-computed values without flow
limiter KM3 ∈ [3.6; 3.7] sensibly differs from the Idel’cik (conical collector with front
wall and screen) or Borda-Carnot (sudden flow-section reduction) estimation one Kgl ∈
[1.1; 1.2]. But the hydraulic path is quite complex and does not reduce to simple config-
urations.

Finally, considering Fig. 6, we conjuncture that the impact on the flow of the fins
located at the bottom of the flow limiter is much greater during LB-LOCA condition
than during nominal-operation one.
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(a) Nominal-operation flow; (aS = a;LT = 0.3 m). (b) Reverse flow; (aS = a;LT = 1.0 m).

Figure 6: Local external-force distribution; mesh M3 (164,160 elements).

5 Conclusions and perspectives

In this paper, we have presented a CFD model of an in-vessel flow limiter to mitigate the
consequences of a large-break loss of coolant accident in a pressurized-water reactor. The
principle of this safety device is based on fins designed to create a strong flow vortex in-
creasing the pressure drop toward the broken cold leg. A rough CFD model using a homo-
geneous relaxed equilibrium model of a liquid-vapour mixture and an immersed boundary
approach has been set-up, allowing a less precise but fast estimation of the pressure drop
following the geometry of the fins. Through 3D/1D up-scaling of a global pressure-drop
coefficient, local pressure-drop coefficients can be provided to thermal-hydraulic system
safety codes, allowing the study of the in-vessel flow limiter effect on the thermal-hydraulic
system.
One-phase fluid CFD simulations have been run using the GENEPI code with a compu-
tation domain defined in coherence with the downcomer of a PWR. Parametric studies on
the turbulence model lead to determine the range of the global pressure-drop coefficients
depending on the direction of the flow and the presence of the flow limiter, opening the
way to take into account the in-vessel flow limiter in a realistic manner. Nevertheless,
considering the limitations related to the turbulence model, this conclusion needs to be
consolidated by body-fitted CFD studies with more precise turbulence models.
Some perspectives can be outlined about the improvement of this numerical model in order
to proceed to the geometry optimization of the design of the flow-limiter fins. In partic-
ular, we can mentioned the space-interpolation scheme across the boundary interface to
reach the second order [18] and the definition of immersed-wall laws for RANS/large-eddy
simulations.
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