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Abstract. The self-sustained oscillations of open cavities with cavity aspect ratios of 2.0, 2.5, 
3.0, 3.5, and 4.0 were studied with and without an active control using moving bottom wall. 
The studies were conducted by using 2D incompressible direct numerical simulations. Self-
sustained oscillatory regimes of shear layer without control were classified into mode II, 
mode III and wake mode as the cavity aspect ratio increases. The results showed that the self-
sustained oscillations were completely suppressed by our control method using suitable 
moderate moving velocities of the bottom wall for all oscillatory modes. 

 
 

1 INTRODUCTION 

Flows over open cavities occur in a wide variety of aerospace and engineering applications, 
for example, the landing gear wheel well of aircrafts, aircraft cargo bays, car sunroofs and 
windows, and spaces between 2 train wagons, etc. Cavity flow is of very interest, because the 
presence of cavity causes self-sustained oscillations of the separated shear layer by a complex 
feedback mechanism, despite its geometrical simplicity. Self-sustained oscillating flow over 
the cavity has been a fluid dynamics phenomenon of interest since the 1960s. Rockwell and 
Naudascher [1] have described the fluid-dynamic excitation mechanism. The nature of flow-
induced oscillations in the open cavity is illustrated in Figure 1 where the length of the cavity 
is L and the depth of the cavity is D. The separated shear layer at the leading edge of the 
cavity develops from its initial perturbations and the Kelvin-Helmholtz instability of the mean 
shear layer profile. The vortical structure of the shear layer travels the length of the cavity and 
ultimately reattaches near the trailing edge of the cavity. The periodic pressure disturbances 
are produced at the trailing edge of the cavity and are fed back to the origin of the unstable 
shear layer near the leading edge of the cavity. The pressure disturbances feedback 
periodically forces the separated shear layer and enhances its coherent structure, so that 
regular large-scale vortices are produced. The interaction of these vortices with the 
reattachment surface induces the pressure disturbances. While the open cavity flow has been 
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investigated by the numerical method (Vinha et al. [2]) and the experimental method (Immer 
et al. [3], Kumar and Vaidyanathan [4]), the characteristic of the flow is not still cleared. In 
this study, the oscillation of the flow is studied and the 2D direct numerical simulation is 
carried out to show that the oscillation is suppressed by the active control using a moving wall. 

It is well known that the primary frequency of the shear layer oscillations varies with the 
cavity length. Many experimental studies have been carried out to reveal the characteristics of 
the frequency variation (Sarohia [5], Knisely and Rockwell [6], Gharib [7], Gharib and 
Roshko [8]). The general feature of the variation of the dominant frequency represented by 
the Strouhal number St with the cavity aspect ratio L/D is shown in Figure 2. A minimum 
cavity aspect ratio is required for the initiation of self-sustained oscillation. The onset of the 
oscillation is associated with the decrease in St as the cavity aspect ratio increases. This flow 
regime is referred as “shear layer mode”. The shear layer mode is characterized by the roll-up 
of vorticity in the shear layer. In the shear layer mode, the decrease in St with the increase in 
the aspect ratio is interrupted by the sudden jump-up. The flow mode before and after the 
jump-up are called the mode II and the mode III, respectively. As the cavity aspect ratio 
increases further, there is a substantial change in the pattern of the cavity oscillations. Gharib 
and Roshko [8] observed a wake-like flow, so they called this flow regime as “wake mode”. 
The wake mode is characterized by a large-scale vortex shedding from the cavity leading edge. 
From the computational point of view, some studies about the mode switching phenomena 
have been conducted. Rowley et al. [9] investigated the mode switching of the shear layer 
mode and the wake mode by using 2D compressible direct numerical simulation. Rubio et al. 
[10] investigated the mode switching by using 2D compressible large eddy simulation. 
However their simulation have been changed at coarse intervals of cavity aspect ratio. 
Yoshida and Watanabe [11] investigated the mode switching by using a series of 2D 
incompressible direct numerical simulation at the cavity aspect ratio from 1.0 to 4.0 with an 
interval of 0.1. The results showed the mode switching among non-oscillation mode, shear 
layer mode (mode II and mode III), and wake mode and the relationship between the cavity 
shear layer oscillation modes and recirculating vortices in the cavity. 

The control of the cavity flow oscillations is one of the challenging topics in flow control 

Figure 1: Schematic illustrating flow-induced 
cavity oscillation. 

Figure 2: Schematic of Strouhal number variation 
and the definition of oscillation modes. 

 



Takashi Yoshida and Takashi Watanabe 

 3

problems. The suppression of the cavity flow oscillations has received considerable attention 
in recent years. The control of cavity oscillations has been reviewed by Rowley and Williams 
[12] and Cattafesta et al. [13]. Numerous workers have used various control devices, for 
example, microjet injection, pulsed blowing actuators, synthetic jets, oscillating spoilers, 
piezoelectric flaps, piezoelectric bimorph actuators, plasma actuators and others. They 
reported the suppression of the oscillations in the separated shear layer by the control using 
these devices. 

Yoshida et al. [14] developed a new active control method for the suppression of the cavity 
flow oscillations. We focused on the role of the recirculation vortices in the cavity in the shear 
layer oscillations. The interaction between the recirculating flow field and the shear layer 
oscillations has been neglected in most previous studies. Our control method is to drive the 
bottom wall of the cavity with a constant tangential velocity, which is similar to the method 
used in the lid-driven cavity flow problem. The moving bottom wall produces a shear stress in 
the fluid and changes the recirculating vortices in the cavity. We presented that the 
suppression of the cavity oscillations is achieved by applying our control method using 2D 
direct numerical simulations for the cavity aspect ratio L/D = 2. However, the effect of our 
control method on the flows at different cavity aspect ratios and different oscillatory modes is 
not obvious. 

The major aim of this investigation is to reveal the effect of our new control method to 
different cavity aspect ratios and different modes. 2D incompressible direct simulations with 
our control method are performed for the flows at the cavity aspect ratios L/D = 2.0, 2.5, 3.0, 
3.5 and 4.0. The mode II appears at L/D = 2.0, 2.5 and 3.0. The mode III emerges at L/D = 
3.5. At L/D =4.0, the flow is in the wake mode. We demonstrate that the oscillations of the 
mode II, mode III, and wake mode are suppressed using our control method. 

2 NUMERICAL METHOD AND CONTROL METHOD 

The numerical method of this study is the same as the one used by Yoshida and Watanabe 
[11].  Figure 3 shows a sketch of the computational domain and indicates several system 

 

Figure 3: Cavity configuration and computaional domain.
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parameters. The governing equations are the two-dimensional, unsteady, incompressible 
Navier-Stokes equations and the equation of continuity in Cartesian coordinates. All variables 
are nondimensionalized by using the cavity depth D and the freestream velocity U. These 
equations are integrated in time by using the P2 pressure correction method by Armfield and 
Street [15]. The momentum equations are discretized by using the second order Adams-
Bashforth method for the convective terms and the Crank-Nicolson method for the diffusive 
terms. These equations are solved by fractional step method to enforce the solenoidal 
condition. The pressure correction term is used with Kim and Moin type boundary condition 
[16] in order to reduce the projection error and recover the second-order accuracy in time. 
Nonuniform staggered grid systems, which cluster node points in the boundary layer, the 
shear layer, the cavity bottom, and the cavity edges, are used for the spatial descretization. 
The second order fully conservative finite difference scheme by Morinishi et al. [17] is used 
for the convective terms and the second order central difference scheme was used for the 
other terms in the spatial discretization. The dimension of the computational domain is similar 
to that used in the 2D direct numerical simulations of Rowley et al. [9].  The laminar Blasius 
boundary layer is specified in the inflow boundary at 0x  . A free-slip condition is applied 
to the normal boundary. A no-slip boundary condition is applied to the wall. At the outflow 
boundary, we use the Sommerfeld radiation condition, which is also called the convective 
outflow condition. The convective velocity in this condition is set equal to the free-stream 
velocity U. This boundary condition allows the vortices to smoothly pass across the 
computational domain. The Reynolds number based on the freestream velocity U and the 
cavity depth D is 6,000. The boundary layer momentum thickness θ at the upstream cavity 
edge is 0.0322 for L/D = 2.0. The Reynolds number Reθ based on U and θ is 193.6. This 

 

Figure 4: The Strouhal number variation with cavity length.
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condition is similar to that of the experiment by Knisely and Rockwell [6], where Reθ = 190. 

3  RESULTS 

3.1 Mode switching in baseline flow 

A series of 2D direct numerical simulations of the baseline flows at the cavity aspect ratio 
L/D from 1.0 to 4.0 with an interval of 0.1 interval have been conducted in our previous 
paper [11]. Figure 4 shows the Strouhal number variation with the cavity length L/D. No 
shear layer oscillation occurs below 1 6.L D  . The minimum length for the onset of the 
self-sustained oscillations is 1 7.L D  . The Strouhal number of the oscillations decreases as 
L D  increases. This variation is interrupted by a sudden jump to a higher value between  

3 1.L D   and 3 2.L D  . The oscillation regime at 3 1.L D   is mode II, while that at 
3 2. L D  is mode III. The maximum cavity length in mode III is 3 6.L D  . The wake 

(a)                                                                    (b)     

 
Figure 5:   Time traces of the normal velocity component near the trailing edge for L/ D   = 2.0 cavity; 
 (a) baseline case   (b) controlled case. 

(a)                                                                    (b)     

 
Figure 6:   Instantaneous streamlines  and the color contour plots of the vorticity for L/ D = 2.0 cavity; 
 (a) baseline case (b) controlled case. 
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mode appears  at 3 7 4 0. .L D  . The present results of shear layer mode closely agree with 
the experimental data of Knisely and Rockwell [6] (for details, refer to our previous paper 
[11]).  

3.2 Control cases in mode II 

The active control method using a moving bottom wall is applied for the cases of L/D = 
2.0, 2.5 and 3.0 in the mode II. The bottom wall velocity wu  varies between 0.0 and -1.5. The 
case of  0 0.wu   is the baseline flow without any control. Figure 5 shows the time trace of 
the normal velocity component v near the downstream edge of the cavity ( 6 9.x   and

0 0.y  ) for 2 0.L D  . The time t  is elapsed the time from the start of the wall movement. 
When the full development of the baseline flow is confirmed, the wall movement is applied 
and the time t  is set to be 0.0. The oscillation of baseline case in Figure 5(a) is periodic. In 
contrast, the oscillation for 0 3.wu    is reduced and is suppressed completely as shown in 

(a)                                                                    (b)     

 
Figure 7:   Time traces of the  normal velocity component near the trailing edge for L/ D   = 2.5 cavity; 
 (a) baseline case (b) controlled case. 

(a)                                                                    (b)     

 
Figure 8:   Instantaneous streamlines  and the color contour plots of the vorticity for L/ D  = 2.5 cavity; 
 (a) baseline case (b) controlled case. 



Takashi Yoshida and Takashi Watanabe 

 7

Figure 5(b). Instantaneous flow fields at 1 000,t   for 2 0.L D   are shown in Figure 6, 
where Figure 6(a) corresponds to the baseline case and Figure 6(b) to the controlled case with 

0 3.wu   . The black lines show the streamlines and the color contours show the vorticity. In 
Figure 6(a), the streamlines of the baseline case show two recirculating vortices in the cavity 
and the vorticity contours of blue color show that the separated shear layer oscillates above 
the two recirculating vortices. In contrast, Figure 6(b) shows that the clockwise-rotating 
vortex on the downstream side becomes larger and the counterclockwise-rotating vortex on 
the upstream side disappears due to the negative wall shear stress and the clockwise-rotating 
vortex occupies the entire space inside the cavity. The flow on the upper side in the cavity is 
parallel to the shear layer over the cavity mouth, so that the shear layer becomes stable and 
the oscillations are suppressed completely. For 2 0.L D  , the oscillations are suppressed by 
the moving bottome wall control in the range of 1 12 0 08. .wu    . 

Figure 7 shows the time trace of the normal velocity component near the downstream edge 
of the cavity ( 7 4.x   and 0 0.y  ) for 2 5.L D  . The oscillation of baseline case in Figure 

(a)                                                                    (b)     

 
Figure 9:   Time traces of the normal velocity component near the trailing edge for L/ D    = 3.0 cavity; 
(a) baseline case (b) controlled case. 

(a)                                                              (b)     

 
Figure 10:   Instantaneous streamlines  and the color contour plots of the vorticity for L/ D  = 3.0 cavity; 
 (a) baseline case (b) controlled case. 
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7(a) is periodic. In contrast, the oscillation for 0 3.wu    is reduced and is suppressed 
completely as shown in Figure 7(b). Instantaneous flow fields at 1 000,t   for 2 5.L D   are 
shown in Figure 8. Figure 8(a) shows three recirculating vortices in the cavity and the shear 
layer oscillation. Figure 8(b) shows one clockwise-rotating large vortex in the cavity and the 
flat shear layer. For 2 5.L D  , the oscillations are suppressed by the moving bottom wall 
control in the range of 1 11 0 18. .wu    . 

Figure 9 shows the time trace of the normal velocity component near the downstream edge 
of the cavity ( 7 9.x   and 0 0.y  ) for 3 0.L D  . The oscillation of baseline case in Figure 
9(a) is periodic. In contrast, the oscillation of 0 4.wu    is reduced and is suppressed 
completely as shown in Figure 9(b). Instantaneous flow fields at 1 000,t   for 3 0.L D   are 
shown in Figure 10. Figure 10(a) shows three recirculating vortices in the cavity and the shear 
layer oscillation. Figure 10(b) shows one clockwise-rotating large vortex in the cavity and the 
flat shear layer. For 3 0.L D  , the oscillations are suppressed by the moving bottom wall 
control in the range of 0 8 0 21. .wu    . 

(a)                                                                    (b)     

 
Figure 11:   Time traces of the normal velocity component near the trailing edge for  L/ D  = 3.5 cavity; 
(a) baseline case (b) controlled case. 

(a)                                                              (b)     

 
Figure 12:   Instantaneous streamlines and the color contour plots of the vorticity for  L/ D  = 3.5 cavity;  
(a) baseline case (b) controlled case. 
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3.3 Control case in mode III 

The active control method using a moving bottom wall is applied for the case 3 5.L D   
in the mode III. Figure 11 shows the time trace of the normal velocity component near the 
downstream edge of the cavity ( 8 4.x   and 0 0.y  ) for 3 5.L D  . The oscillation of the 
baseline case in Figure 11(a) is periodic. In contrast, the oscillation of 0 4.wu    is reduced 
and is suppressed completely as shown in Figure 11(b). Instantaneous flow fields at 1 000,t   
for 3 5.L D   are shown in Figure 12. Figure 12(a) shows four recirculating vortices in the 
cavity and the shear layer oscillation. Figure 12(b) shows one clockwise-rotating large vortex 
in the cavity and the flat shear layer. For 3 5.L D  , the oscillations are suppressed by the 
moving bottom wall control in the range of 0 8 0 27. .wu    . 

3.4 Control case in wake mode 

 The active control method using a moving bottom wall is applied for the cases 4 0.L D   
in the wake mode. Figure 13 shows the time trace of normal velocity component near the 

(a)                                                                    (b)     

 
Figure 13:   Time traces of the normal velocity component near the trailing edge for L/ D  = 4.0 cavity; 
(a) baseline case  (b) controlled case. 

(a)                                                              (b)     

 
Figure 14:   Instantaneous streamlines and the color contour plots of the vorticity for L/ D  = 4.0 cavity; 
(a) baseline case (b) controlled case. 
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downstream edge of the cavity ( 8 9.x   and 0 0.y  ) for 4 0.L D  . The oscillation of the 
baseline case in Figure 13(a) has a large amplitude and a periodicity. In contrast, the 
oscillation of 1 0.wu    is reduced and is suppressed completely as shown in Figure 13(b). 
Instantaneous flow fields at 200t   for 4 0.L D   are shown in Figure 14, where Figure 
14(a) corresponds to the baseline case and Figure 14(b) to the controlled case with 1 0.wu   . 
Figure 14(a) shows a large scale vortex in the cavity and the vortex shed from the upstream 
edge of the cavity. Figure 14(b) shows one clockwise-rotating large vortex in the cavity and 
the smooth curved shear layer. For 4 0.L D  , the oscillations are suppressed by the moving 
bottom wall control in the range of 1 3 0 5. .wu    . 

4 CONCLUSIONS 

- This paper studies the mode switching that occurs in flows passing over two-
dimensional open cavities by using 2D incompressible direct numerical simulations. 
The computations have revealed three oscillation regimes: the mode II of the shear 
layer mode, the mode III of the shear layer mode and the wake mode in the baseline 
flows. 

- This paper is concerned with the active control method using a moving bottom wall 
for the open cavity oscillations. We have applied our control method to the three 
oscillation modes of flows over the open cavity. 2D incompressible direct 
simulations with and without our control method have been conducted for the flows 
at cavity aspect ratios of 2 0  2 5  3 0  3 5 and 4 0. , . , . , . .L D  . The results of controlled 
simulations showed the self-sustained oscillations were completely suppressed by our 
control method for all L D and all oscillation modes. 
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