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Abstract. This paper addresses a non-conforming Multiscale Finite Element Method
(MsFEM) for viscous incompressible flows in genuine heterogeneous media. The multi-
scale method relies upon the coupling of two grid scales: one coarse grid and one fine
grid. The principe is to compute on the fine grid effective properties of the media in the
form of basis functions, which are then used to solve problems on the coarse grid [1]. It’s
known that when computing multiscale basis functions, the approximation of boundary
conditions on coarse element edges influences critically the accuracy of the MsFEM. Based
on the work of [2], the weakly enforced conformity between coarse elements leads to a
natural boundary condition on coarse element edges. This relaxes the sensitivity of the
method to complex patterns of obstacles, without any need of oversampling techniques.
Two methods have been developped and compared making use of a study of open flows
in a heterogeneous domain.
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1 INTRODUCTION

Many engineering problems have multi-scale features, composite materials and flows in
porous medai are typical examples of such kind. In some cases, the quantities of interest
are only related to the large-scale properties of the solutions, but the fine-scale features
of the model can have significant impact on the large-scale properties of the solutions.
However, one needs a very fine mesh to resolve the fine-scale features of the problem to
get faithful numerical results. Thus many Multiscale Finite Element method (MsFEM)
are developed to solve multiscale problems without being confined to solving fine scale
solutions. A nuclear reactor core can be considered as a porous media due to the existence
of thousands of fuel rods. In order to efficiently solve this highly heterogeneous problem,
a Multiscale Finite Element Method (MsFEM) is thus desired.

Firstly talked in the work of [3], when computing multiscale basis functions, the ap-
proximation of boundary conditions can influence greatly the eventual accuracy of the
MsFEM method. Thus Hou and Wu have introduced the oversampling method to pro-
vide a best approximation of the boundary condition of the multiscale basis functions.
The method consists of solving local problems in a domain larger than the coarse element
itself. The aim is to reduce the effect of wrong boundary conditions and bad sampling
sizes.

The non-conforming nature of Crouzeix-Raviart element [4] is shown to provide a good
flexibility especially when arbitary patterns of porosities or inclusions are considered.
Based on this feature, [2], [5], [6] and [7] have proposed a non-conforming Crouzeix-Raviart
MsFEM, where the conformity between coarse elements are enforced on in a weak sense,
i.e., only the ”jump” of the basis functions vanish at coarse element edges. This leads to
a natural boundary condition on coarse element edges, which relaxes the sensitivity of the
method to complex patterns of obstacles, without having to use oversampling methods.

Based on [2] and [7], we have implemented Crouzeix-Raviart MsFEM in TrioCFD
[8] to solve the Stokes flow in heterogeneous media. We have extended the MsFEM
for unstructured meshes and developed techniques in Salome plateform to generate such
specific discretizations. No penalization techniques are employed in our computations.
Local cell problems are solved by the Finite Volume Element Method (FVEM) instead of
the Finite Element Method (FEM). One method to enrich the basis functions is developed
in order to improve the accuracy. The paper is organized as follows. The formulation of
problem is given in section 2. The construction of Crouzeix-Raviart MsFEM is presented

Ωε

Bε

Ω

Figure 1: An illustration of domain Ω comprising a fluid domain Ωε perforated by inclusions Bε
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Figure 2: An illustration of the discretised domain τH and the ωE support of ΦE .

in section 3. In section 4, numerical tests are presented and results are discussed followed
by some conclusions.

2 PROBLEM FORMULATION

We define a domain Ω, a two-dimensional domain consisting of a set of inclusions Bε

and the flow domain Ωε avec Ω = Ωε∪Bε (see Fig. 1). The steady-state Stokes’s problem
is to find the velocity u and the pressure p which are solutions to:

−ν∆u+∇p = f in Ωε (1)

∇ · u = 0 in Ωε

The boundary conditions are given by:

u = 0 on ∂Bε ∩ ∂Ωε (2)

u = ω on ∂Ω ∩ ∂Ωε

where f is a source function and ω is a function fixed at the boundary ∂Ω. Here we
consider only the non-slip boundary condition on the boundaries of inclusions: ω = 0.

3 APPLICATION OF CROUEIX-RAVIART MsFEM

Here, we explain the application of our method by first defining the coarse and fine
meshes. We then introduce the functional spaces for our multiscale basis functions and
describe the constuction of these basis functions within each coarse elements.

3.1 Discretisation

We discretise the domain Ω into a two-dimnesional non-structured mesh τH (see Fig. 2).
τH consists of coarse elements Tk, k=1,2,...,NH , where NH is the total number of coarse
elements. The EH the sef of all coarse element edges Ej, j=1,2,...,NE in τH including edges
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Figure 3: Computational domain with 21 arbitary placed inclusions

(a) 8×16 (b) 16×32

(c) 32×64 (d) Reference

Figure 4: ux contours of a channel flow with inclusions with the CR2 method

on the domain boundary ∂Ω. For each coarse element Tk, we construct a fine mesh τh(Tk),
consisting of fine elements each with width h. The union of τh(Tk) for all Tk constructs a
global fine mesh τh, which overlaps with τH .

3.2 Crouzeix-Raviart functional spaces

The functional spaces for velcity VH , and for pressure MH are given below:

VH = { u ∈ (L2 (Ω))
d

: ∀T ∈ TH , ∃p ∈ Ld0 (Ωε ∩ T ) such that (3)
−∆u+∇p = 0 on Ωε ∩ T ,
∇ · u = const1 on Ωε ∩ T ,
u = 0 on Bε ∩ T ,
n · ∇u+ pn = g on E ∩ Ωε, ∀E ∈ E (T ) }

where EH(T ) is the ensemble of edges composing ∂T and g a linear function. d is the
dimension of the domain. The key point is to maintain the continuity of the average of the
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(a) 8×16 (b) 16×32

(c) 32×64 (d) Reference

Figure 5: uy contours of a channel flow with inclusions with the CR2 method

velocity across an edge E:
∫
E

[[u]] · ωE,j = 0, where [[u]] = 0 is the jump of the velocity
across E and ωE,j are weighting functions associated to the edge E with j = 1, ..., s
and s a positive integer. The weak continuity across element boundaries allows adaptive
boundary conditions which relaxes the sensitivity of the method to random arrangements
of inclusions, without the need of applying any oversampling methods.

3.3 Construction of Crouzeix-Raviart basis

For each edge E ∈ EH , we construct the basis functions ΦE,i ∈ VH , such that
∫
E

ΦE,i =
ei, and

∫
E′ ΦE,i = 0 for all E ′ ∈ EH , E ′ 6= E. These basis functions form a basis of VH ,

i.e.:

VH = span{ΦE,i, E ∈ EH , i = 1, · · · , s}. (4)

The support of ΦE,i is supp (ΦE,i) ⊂ ωE, which is the ensemble of two adjacent triangles
Tk, k = 1, 2 in τH which share the edge E. We solve on each of these triangles ΦE,i and
πE,i:

−∆ΦE,i +∇πE,i = 0 on Ωε ∩ Tk, (5)

∇ ·ΦE,i = const on Ωε ∩ Tk,
n · ∇ΦE,i − πE,in ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε ∀F ∈ E(Tk),

ΦE,i = 0 on Bε ∩ Tk,∫
F

ΦE,i · ωF,j =

{
δij, F = E
0, F 6= E

∀F ∈ E (Tk) , j = 1, · · · , s.∫
Ωε∩Tk

πE,i = 0.
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(a) CR2 8×16 (b) CR3 8×16

Figure 6: Comparison of ux contours computed with CR2 and CR3 methods

(a) CR2 8×16 (b) CR3 8×16

Figure 7: Comparison of uy contours computed with CR2 and CR3 methods

where EH(Tk) is the set of all the edges of the triangle Tk.
This equation is implemented using the FVEM in TrioCFD software with the P1NC-

P0 finite element space. In the weak form, this equation reduces to finding ΦE,i ∈
H1(Tk ∩ Ωε)d, πE,i ∈ L2

0(Tk ∩ Ωε), and the Lagrange multipliers λF,j ∈ R, ∀F ∈ EH(Tk)
and j = 1, ..., s by solving:∫

Tk∩Ωε
∇ΦE,i : ∇v −

∫
Tk∩Ωε

πE,i divv +
∑

F∈E(Tk)

λF,j ·
∫
F

v · ωF,j = 0, (6)

∀v ∈ H1 (Tk) such that v = 0 on Tk ∩Bε∫
Tk∩Ωε

q divΦE,i = 0, ∀q ∈ L2
0 (Tk ∩Bε)∑

F∈E(Tk)

µF,j ·
∫
F

ΦE,i · ωF,j = µE,i, ∀µF ∈ Rd, F ∈ E (Tk)

3.4 Crouzeix-Raviart MsFEM coarse-scale solution

We now define the coarse-scale solution of Eq.(1). By discretising p into pH and u into
uH , we reformulate Eq.(1) in a weak form in τH as:

a (uH ,vH) + b (vH , p̄H) = (vH ,f) , ∀vH ∈ VH (7)

b (uH , qH) = 0, ∀qH ∈MH
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(a) CR2 8×16 (b) CR2 16×32

(a) CR2 32×64 (b) Reference

Figure 8: Pressure contours of a channel flow with CR2 method

where

a (uH ,vH) =

∫
Ωε
µ∇uH : ∇vH dV (8)

b (vH , p̄H) = −
∫

Ωε
p̄H∇ · vH dV

The solution of problem can then approximated as linear combination of multiscale
basis functions ΦE,i:

uH (x, y) =
∑

E∈E(Tk)

s∑
i=1

uE,iΦE,i (x, y) (9)

pH (x, y) =
∑

E∈E(Tk)

s∑
i=1

uE,iπE,i (x, y) + p̄H

The coarse-scale problem is solved on the coarse mesh τH using P1NC-P0 finite element
method implemented in TrioCFD. We calculate reference solutions using a P1NC-P0
finite element method in the global fine mesh τh. All systems are solved by the pressure-
correction algorithm [9, 10] which is widely used in industrial softwares.

3.5 Choices of weighting functions

In this article, we consider two choices of weighting functions, leading to two different
multiscale spaces [2]:

CR2 : s = 2, ωE,1 = e1, ωE,2 = e2. (10)

CR3 : s = 3, ωE,1 = e1, ωE,2 = e2, ωE,3 = nEΨE
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(a) CR2 8×16 (b) CR3 8×16

Figure 9: Comparison of pressure contours computed with CR2 and CR3 methods

for any E ∈ EH . Here nE denote a unit vector normal to E and ΨE a linear polynomial
on E such that

∫
E

ΨE = 0. nE and ΨE are arbitrary, but should be made once for all.

4 NUMERICAL RESULTS

We consider a 2 dimensional channel Ω = [0 ≤ x ≤ 2, 0 ≤ y ≤ 1] containing a porous
medium spanning from x = 0 to x = 2. We assign ρ = 1, µ = 1, and f = 0. At the inlet,
the theoretical incompressible Poiseuille solution (parabolic velocity profile) is applied for
all cases, i.e. u = 0.004y (1− y) e1 on x = 0, whereas the Neumann boundary condition
∂u/∂n = 0 is assumed at the outlet x = 2. No-slip boundary conditions are applied at
the top and bottom walls.

First, we apply our method on a simple Poiseuille flow without any inclusions. Then
we consider a open-channel flow in a heterogenous medium with 21 inclusions, each with
a width of ε = 0.01 depicted in Fig. 3. The reference solution is calculated on a fine mesh
of environ 320×640 triangles.

4.1 Poiseuille flow

For the Poiseuille flow, the error norms of the Crouzeix-Raviart MsFEM solutions
relative to the theoretical solution on a number of coarse meshes are given in the left
figure of Fig. 10, showing a convincingly converging trend.

4.2 Open-channel flow in a heterogenous medium

In the presence of random pattern of inclusions (see Fig 3), the Reynolds number is

Re = 0.001 where Re =
ρε|u|
µ

(in the absence of inclusions, ε is the channel diameter).

4.2.1 Numerical results with CR2 method

In Figs. 4 and 5, solutions of CR2 method on several mesh configurations in terms
of ux and uy contours are given alongside those of the reference solutions. In Fig. 8,the
pressure contours are given. From Fig. 10 we can see that our results converge toward
the reference solutions. Most flow features can be quantitatively captured using the
configuration 16× 32.
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Figure 10: Left: relative errors of Poiseille flow. Right: relative errors of channel flow.

4.2.2 Comparison of numerical results with CR2 and CR3 methods

Authors of [7] point out that CR2 space VH method may not be sufficient in some cases
to construct a suitable approximation of the solution to the Stokes problem. Thus the CR3
method has been implemented in TrioCFD in order to enrich multi-scale basis functions
and ameliorate the accuracy of our numerical results. From Figs. 6 and 7, we observe
that the CR3 method captures better the flows features and shows less non-conformity
than the CR2 method. In Fig. 9, we observe that the CR3 method gives slightly better
pressure than the CR2 method. From Fig. 10, we can see that CR3 gives smaller L2 and
H1 errors compared to the CR2 method.

5 CONCLUSIONS

In this paper, two variants (CR2 and CR3) of Crouzeix-Raviart MsFEM has been de-
veloped and implemented in TrioCFD. Numerical tests have been done for imcompressible
flow around very fine and non-periodically placed inclusions. The Crouzeix-Raviart mul-
tiscale basis functions are computed in triangular discretisation by FVEM in TrioCFD
and belong to P1NC-P0 FEM spaces. The weakly enforced continuity across coarse el-
ement edges ensures accurate basis function solutions without using any oversampling
methods. Convergence studies of Poiseuille flow and open-channel flow in heterogeneous
media are given. Good qualitative agreement with the reference solutions has been shown
at relativement coarse mesh configurations.

However, CR2 may be insufficient to approximate accurately the solutions of Stokes
flow. With the enrichment of basis functions, CR3 method captures better flow features
and improves the accuracy of the MsFEM especially in presence of very dense inclusions.
Other types of enrichment of basis functions can be a subject of our future work.

This work has layed the ground work for more complicated Navier-Stokes equations.
Using basis functions computed by solving Stokes equations, our current work is devel-
oppping different convection schemes to solve the Navier-Stokes coarse problem.

Although the test cases are given in 2 dimensions, the MsFEM have been developed
and implemented in TrioCFD for 2 and 3 dimensions cases. More simulation results will
be presented later.
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