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Abstract. This work is concerned with the development of a numerically robust two-scale
computational approach for the prediction of the local and overall mechanical behavior
of heterogeneous materials with non-linear constitutive behavior at finite strains. Assum-
ing scale separation, the macroscopic constitutive behavior is determined by the mean
response of the underlying microstructure which is attached to each macroscopic integra-
tion point in the form of a periodic unit cell. The algorithmic formulation and numerical
solution of the two locally-coupled boundary value problems is based on the FE-FFT
method (e.g. [14, 17]). In particular, a numerically robust algorithmic formulation for
the computation of the overall consistent algorithmic tangent moduli is presented. The
underlying concept is a perturbation method. In contrast to existing numerical tangent
computation algorithms the proposed method yields the exact tangent using only six (in-
stead of nine) perturbations (3 in 2d). As an example, the micromechanical fields and
effective material behavior of elasto-viscoplastic polycrystals are predicted for represen-
tative simulation examples.

1 INTRODUCTION

Most materials of technological importance (e.g. polycrystals, high-strength ceram-
ics, fiber-reinforced composites) are characterized by complex microstructures which are
governed by non-linear constitutive relations (e.g. plasticity, damage), in general. Thus,
the prediction of the overall constitutive response of heterogeneous media represents a
challenging task. In order to capture macroscopic boundary conditions as well as mi-
crostructural details, scale separation might be assumed and two-scale full-field models
be employed. Recently, FE-FFT methods (e.g. [14, 17, 18]) have been developed which
make use of a finite element (FE)-based algorithmic formulation and numerical solution of
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the macroscopic boundary value problem (BVP) and fast Fourier transforms (FFT) and
fixed-point methods (e.g. [5, 7]) for an iterative solution of the microscopic BVP. Since
FFT-based micromechanical solvers have been shown (e.g. [11, 13]) to be more efficient
than FE-based solvers in many cases, FE-FFT-based approaches seem to be a promising
alternative to the classical FE2 method (e.g. [8]). Using the classical Newton-Raphson
scheme for the solution of the macroscopic BVP, the computation of the overall consis-
tent tangent moduli is required for the linearization procedure. In the context of FE-FFT
methods numerical tangent computations (e.g. [17, 18]) have been used in most cases
for simplicity which is correlated to high computational costs, in general. Recently, [19]
proposed a numerical scheme to compute the tangent directly based on the Lippmann-
Schwinger [2] equation. However, such direct tangent computations might be associated
with high memory allocations and less efficient for sophisticated large strain constitutive
laws with anisotropy or complex microstructures.

The purpose of this paper is the derivation of a numerically robust algorithmic formu-
lation for the numerical computation of the overall consistent algorithmic tangent moduli.
The proposed perturbation-based algorithm ensures quadratic convergence for finite per-
turbations using a small number of stress computations. As an example, the FE-FFT
method (e.g. [17, 18]) is employed to predict the local and effective mechanical behavior
of polycrystalline aggregates with elasto-viscoplastic constitutive behavior at finite strains.

This paper is structured as follows: The two-scale problem and micro-to-macro tran-
sition is reviewed in Section 2. In Section 3 the phenomenological finite strain crystal
plasticity constitutive model for single crystal grains is presented in a nutshell. The
microscopic FFT- and macroscopic FE-based algorithmic formulation is introduced in
Section 4. Basic numerical results and representative simulation examples are presented
in Section 5. The paper ends with a summary and discussion in Section 6.

2 TWO-SCALE BOUNDARY VALUE PROBLEM

If not stated otherwise, all differential operators are defined in and referred to the
reference configuration.

2.1 MACROSCOPIC PROBLEM

Let us consider the macroscopic structure Ω with boundary ∂Ω on which displacement
and/or traction boundary conditions are applied. The deformation at point X ∈ Ω is
described by the displacement vector u from which the macroscopic deformation gradient
F (X) = I + Gradu(X) is deduced. Conservation of quasi-static linear momentum in
the absence of body forces requires

DivP (X) = 0 inΩ (1)

where P (X) = P (X,F ) denotes the macroscopic first Piola-Kirchhoff stress tensor.
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2.2 MICROSCOPIC PROBLEM

The overall constitutive relation P (X) is defined by the mean response of the under-
lying microstructure which is attached to each X ∈ Ω in the form of a periodic unit cell
(UC) of the domain Ω. Microstructural deformations are assumed to be dictated by F .
Thus, we may assume the deformation gradient F to be additively split into the imposed
macroscopic deformation gradient F and a spatially heterogeneous fluctuation field H̃

such that
F (X;X) = F (X) + H̃(X) (2)

where H̃(X) = Grad ũ(X) denotes the fluctuation field of the local displacement gra-
dient. Let us establish the microscopic constitutive relation P (X) = P (X,F , Ḟ ,χ) at
each X ∈ Ω for an arbitrary rate-dependent material with internal variables χ to define
the microscopic BVP for quasi-static mechanical equilibrium

DivP (X) = 0 inΩ (3)

in analogy to (1). Periodic micromechanical fields are assumed which implies periodic
deformations and antiperiodic tractions.

2.3 SCALE TRANSITION

The macroscopic deformation gradient F and its work-conjugate stress measure P

F =
1

V

∫

Ω

F dV and P =
1

V

∫

Ω

P dV (4)

are defined through the volume averages of their local fields F and P with V = vol(Ω).
Thus, the handshake between both scales only requires the transfer of F and P , respec-
tively.

3 CONSTITUTIVE MODEL

The constitutive model formulation used in this work is based on earlier work by [1, 4]
and others. We assume the deformation gradient

F = FeFp (5)

to be multiplicatively decomposed into elastic Fe and plastic Fp parts. The superposition
of the contribution of multiple slip systems α = 1, . . . , nslip defines the plastic velocity
gradient

Lp =

nslip∑

α=1

γ̇α dα ⊗ nα = ḞpF
−1
p (6)

where dα and nα represent the slip direction and plane normal. The second Piola-
Kirchhoff stress Se = C : Ee is introduced in terms of the elastic stiffness C and Green-
Lagrange strain Ee =

1
2
(F⊤

e Fe−I) in the intermediate configuration to define the resolved
shear rate as

τα(Me) = Me · (dα ⊗ nα) (7)
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where Me = CeSe denotes the Mandel stress with Ce = F⊤

e Fe. If (7) exceeds a
critical value τ c, the material is considered to flow yielding irreversible deformations.
The critical resolved shear stress (CRSS) τ c is related to the accumulated plastic slip
γacc =

∑

α

∫
|γ̇α| dt through τ c(γacc) = τ c0 + qh(γacc), where τ c0 denotes the initial CRSS

and qh(γacc) an isotropic hardening function. The powerlaw type flow rule

γ̇α = γ̇0

〈
|τα| − τ c

τD

〉p

sgn(τα) (8)

is defined in terms of the drag stress τD, rate sensitivity parameter p and reference shear
rate γ̇0. Voce-type hardening behavior is assumed which is described by the hardening
function

qh(γacc) = τ c0 + (τ∞ − τ0) tanh

(
(h0 − h∞)γacc

τ∞ − τ c0

)

+ h∞γacc (9)

h0, h∞ and τ∞ are material parameters. The plastic deformation gradient Fp and the
accumulated plastic slip γacc define the set of internal variables χ = {F−1

p , γacc}.

The flow rule (8) is assumed to be discretized using an implicit time integration scheme
(e.g. backward Euler). For moderate and high rate-sensitivity parameters p, small time
increments ∆t are required to ensure local convergence, in general. Following [22, 20], we
may assume a continuously differentiable transition between the powerlaw and a linear
approximation. The regularized solution gives an improved initial guess for the non-
regularized solution which leads to local convergence for relatively large time increments
∆t and high values for p. The underlying algorithm ensures that the regularized solution
coincides with the original powerlaw solution at convergence. Details on the discretized
set of local equilibrium equations and the implementation of the solution algorithm for
finite strain elasto-viscoplasticity which is used in this work can be found in [20] and [21].

4 ALGORITHMIC FORMULATIONS

The algorithmic formulation and numerical solution scheme of the two locally-coupled
BVPs (1) and (3) is based on the FE-FFT method (e.g. [14, 17]) and explained in a
nutshell, in what follows.

4.1 FINITE ELEMENT DISCRETIZATION OF MACROSCOPIC EQUA-

TIONS

The weak form of the macroscopic balance of linear momentum

g(u, δu) =

∫

Ω

S · δE dV −

∫

∂
t
Ω

t0 · δu dA = 0 ∀δu (10)

is derived based on the principle of virtual work with corresponding boundary conditions
u = u0 on ∂uΩ and/or t = t0 on ∂tΩ, respectively with

δE =
1

2

(

F
⊤

Grad δu+Grad δu⊤F
)

(11)
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As usual, (10) vanishes at equilibrium for arbitrary test functions δu. Any discretization
Ω ≈

⋃nelem

e=1 Ω
e
of Ω into nelem elements and linearization of (10) with respect to u induces

∫

Ω

Grad δu · (Grad∆uS) dV +

∫

Ω

δE ·
∂S

∂E
[∆E] dV =

−

∫

Ω

δE · S dV +

∫

∂
t
Ω

t0 · δu dA ∀δu

(12)

Introducing the approximations

u ≈ N e
u
ue, δu ≈ N e

u
δue, Grad(u) ≈ Be

u
ue, Grad(δu) ≈ Be

u
δue (13)

and
Be

u
= Grad(N e

u
), ∆E ≈ Ge

u
∆ue, δE ≈ Ge

u
δue (14)

leads to the following set of non-linear equations in Voigt notation (denoted by the index
V)

nelem∑

e=1

δue⊤

{(
∫

Ω
e

Be⊤
u

D
eBe

u
dV +

∫

Ω

Ge⊤
u

(
∂Sv

∂Ev

)e

Ge
u
dV

)

∆ue

}

=

−

nelem∑

e=1

δue⊤

{
∫

B
e

Ge⊤
u
S

e

v dV −

∫

∂
t
Ω

N e⊤
u

t0 dA

} (15)

with De
ijkl = Se

jlδik. Classical assembly of the left- and right-hand side of (15) leads to the
global system of equations which is solved for the global nodal displacement increment
using the Newton-Raphson scheme. Quadratic convergence is obtained by consistently
linearizing (10) and computing the overall algorithmic tangent

A
e
=

(
∂Sv

∂Ev

)e

(16)

4.1.1 OVERALL CONSISTENT TANGENT COMPUTATION

Different perturbation-based methods have been proposed to compute the overall con-
sistent tangent numerically. For example, [6] developed an efficient algorithm to compute
(16) based on three (2D) or six (3D) perturbations in finite strain theory. However, the
convergence behavior of the FE-solver is strongly influenced by the choice of the pertur-
bation value. In what follows, an algorithmic formulation is presented which leads to
quadratic convergence based on three (2D) or six (3D) finite perturbations.
The macroscopic deformation gradient F and its work-conjugate stress measure P de-
fined via (4) are related through dP = G : dF , where G denotes the overall algorithmic
tangent operator. Polar decomposition of F leads to

dP = G : dF = G : (R0 · dU) (17)
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assuming fixed rotations R0 for each macroscopic load step. Let us formulate the overall
constitutive relation in terms of U and the Biot stress

T =
1

2

(

R0
⊤ ·P +R0 · P

⊤
)

= sym (U · S) (18)

which allows us to construct the algorithmic tangent B = ∂
U
T based on 3 (2D) or 6

perturbations (3D). Suppose that B can be computed exactly, linearization of (18) gives

dT
!
= B : dU with dT =

1

2

(
dU · S +U · dS + S · dU + dS ·U

)
(19)

Factorization of (19) with respect to dT and dU and rearrangement leads to

(

U
sym
✷ I + I

sym
✷ U

)

︸ ︷︷ ︸

E
−1

: dS =
(

2B− (S
sym
✷ I + I

sym
✷ S

)

︸ ︷︷ ︸

D

: dU (20)

where the short-hand notation

(Q
sym
✷ I)ijkl =

1

2
(Qikδjl +Qilδjk +Qljδik +Qkjδil) (21)

was introduced for convenience. Since dS = (E : D) : dU and dC = E−1 : dU , (20) can
be reformulated as

dS = 2 (E : D : E)
︸ ︷︷ ︸

A

: dE (22)

which represents the constitutive relation between S and E. Replacing the local consti-
tutive form by its linearized version

P (i+1) = P (i) + ∂FP |F (i) : (F (i+1) − F (i)) (23)

for the numerical tangent computation, the overall constitutive relation T (U) is linearly
dependent on U via (17). Since the local fields F (i),P (i) and ∂FP |F (i) are known from the
stress computation, only a system of linear equations has to be solved for each perturbation
in U at the micro scale. As a result, quadratic convergence is observed at the FE-level
using three (2D) or six (3D) finite perturbations.

4.2 LIPPMANN-SCHWINGER EQUATION FOR FINITE STRAINS

Based on the pioneering work for linearized kinematics by [2, 3] and recent FFT-based
iterative solution methods for the geometrically non-linear theory [10, 13], the constitutive
relation is reformulated based on a polarization field

τ (F ) = P − C
(0) : F (24)
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which defines the difference in material properties between the microstructure and a
homogeneous reference material with elastic stiffness C(0). Making use of Green’s function
G(0) associated with C(0) solves the reformulated local problem

Div(C(0) : F ) = −Div(τ ) inΩ (25)

yielding the Lippmann-Schwinger equation (e.g. [2])

F = F − Γ
(0) ∗ τ inΩ (26)

where

(Γ(0) ∗ τ )(X) =

∫

Ω

Γ
(0)(X,Y ) : τ (Y ) dY (27)

denotes the convolution integral between the Green’s operator Γ(0) and τ . The integral
equation (26) can efficiently be solved using FFT- and fixed-point methods (e.g. [5, 7, 13]).
Assuming an isotropic reference material with elastic constants µ(0) and λ(0), closed-form
expressions for the Green’s function tensor Ĝ(0) and its kernel Γ̂(0)

(

Ĝ
(0)
ik (ξ)

)−1

= C
(0)
ijkl ξjξl, Γ̂

(0)
ijkl(ξ) = Ĝ

(0)
ik (ξ)ξjξl for ξ 6= 0 (28)

are available in Fourier space. Note that the short-hand notation f̂(ξ) = FFT{f (X)} was
introduced for convenience, where ξ denotes the frequency vector. Solving the linearized
Lippmann-Schwinger equation

∆F (i+1) + Γ
(0) ∗

[(
∂FP |F (i) − C

(0)
)
: ∆F (i+1)

]
= F − Γ

(0) ∗ P (i)(F (i)) (29)

for ∆F (i+1) by means of FFT- and Newton-Krylov subspace methods (e.g. conjugate gra-
dients [15], GMRES [16]) leads to quadratic convergence independent of the choice of C(0)

as shown by [12].
In this work a FFT- and conjugate gradient-based micromechanical solver with the conver-
gence criterion ||∆F (i+1)||/||F || < tol∆F is implemented. An improved starting solution
for the micromechanical fields F (i), P (i) and ∂FP |F (i) is obtained by performing a few
fixed-point iterations before each Newton step. Details can be found in [18].

5 NUMERICAL EXAMPLE

For simplicity attention is restricted to two-dimensional numerical examples assuming
a plane strain condition. A polycrystalline microstructure consisting of 100 randomly
distributed grains with random orientations is sampled on a square unit cell. The latter
is embedded in each integration point of the macroscopic structure. In order to increase
the efficiency of the proposed two-scale approach, a reduced integration-based FE for-
mulation with hourglass stabilization is used yielding one integration point per element
(e.g. [9]). The material parameters used for the micromechanical crystal plasticity model
are summarized in Table 1. The FFTW-library (www.fftw.org) is employed for the (in-
verse) Fourier transform of any local field. The two-scale model is implemented as a user
element into the finite element software feap (www.ce.berkeley.edu/projects/feap/).
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C11 [GPa] C12 [GPa] C44 [GPa] τ c0 [MPa] τD [MPa] τ∞ [MPa] h0 [MPa] p [-]
236 134 119 1 150 420 500.0 20

Table 1: Used material parameters. Furthermore, γ̇0 = 1/s was set.

Since the focus of this paper is the convergence of the macroscopic FE-solver, the
discretization of the microstructural domain is rather coarse. N = 63 grid points are used
for the discretization in each spatial direction. The polygrain microstructure is visualized
in the right part of Figure 1. In the left part of Figure 1 the macroscopic structure
with boundary conditions is shown. The left side of the structure Ω is clamped and the
right edge is subjected to a force f 2 = 100N in x2−direction applied in 150 loadsteps.
This example is known as Cook’s membrane. In what follows, the numerical tangent

f 2 = 100N

cl
am

p
ed

macro structure

microstructure

2 mm

16 mm

18 mm

Ω

Ω

Figure 1: FE-discretized macro structure with boundary conditions (left) and Fourier-
discretized microstructure (right). The latter is embedded in each macroscopic integration
point.

computation method proposed by [6] is denoted as ”method 1” and the new model which
was introduced in Section 4.1.1 by ”new method”. Both methods are used to compute
the overall consistent tangent moduli for the two-scale numerical example schematically
drawn in Figure 1 based on different values for the underlying perturbation value ζ .
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❛
❛
❛
❛

❛
❛
❛
❛
❛
❛
❛
❛
❛
❛

perturbation ζ

10−07 10−05 10−03 10−01 10+01 10+03 10+05 10+07

new method 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7
method 1 4.7 5.74 7.28 x x x x x

Table 2: Average number of macroscopic iterations per macroscopic loadstep of two-scale
simulation described by Figure 1 for different perturbation values of ζ . Divergence of the
macroscopic FE-solver is denoted by ”x”.

In Table 2 the average number of macroscopic Newton iterations per load step is
summarized. The results show that the ”new method” is characterized by the same
number of iterations independent of ζ . For ”method 1” the number of Newton iterations
increases with increasing ζ and breaks down for ζ > 10−3. Note that simulations were
also conducted based on ζ = 10−08 and ζ = 10−09. The average number of FE iterations
for ”method 1” was not smaller than 4.7 in both cases. For any investigated value of ζ
the convergence rate for the ”new method” is quadratic. As an example, the convergence
rate of the last macroscopic load step is visualized in Table 3 using the ”new method”.

iteration residual

1 6.13962 ·10+01

2 4.56745 ·10+01

3 3.62998 ·10+00

4 4.30757 ·10−02

5 2.29316 ·10−05

6 6.13503 ·10−09

Table 3: Convergence rate of macroscopic FE-solver for the last macroscopic load step
with ζ = 10+03 using the ”new method”.

For completeness, the accumulated plastic slip is visualized for one selected element
in the right part of Figure 2. In the left part of Figure 2 the first component of the
macroscopic first Piola-Kirchhoff stress tensor is shown. Both figures correspond to the
last converged load step.

6 CONCLUSION

In this paper a numerically robust algorithmic formulation for the computation of the
overall consistent algorithmic tangent moduli of non-linear heterogeneous materials in a
finite strain framework was derived. The underlying concept is based on a perturbation
technique and linearized local constitutive form. The special structure of the developed
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γacc [-]
0 0.29

P 11 [MPa]

244.62

0

-244.62

-489.24

Figure 2: Visualization of macroscopic stress component P 11 and local accumulated plastic
slip γacc for the last converged load step.

tangent computation algorithm leads to quadratic convergence for finite perturbations
using three (2D) or six (3D) stress computations. Thus, the proposed scheme represents
a good compromise between numerical robustness and low memory allocation. However,
further simulation examples have to be conducted and different BVPs to be analyzed in
order to verify the observations that have been made in this paper.
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[2] Kröner, E. Statistical Continuum Mechanics. Springer-Verlag, CISM Lecture Notes
92, 1972.

[3] Willis, J. R. Variational and related methods for the overall properties of composites.
In: C. S. Yih, Ed. Advances in Applied Mechanics. (1981) 21.

[4] Asaro, R. J. Crystal Plasticity. J. Appl. Mech. (1983) 50:921–934.

[5] Moulinec, H. and Suquet, P. A fast numerical method for computing the linear and
nonlinear mechanical properties of composites. Comput. Method. Appl. M. (1994)
318:1417–1423.

[6] Miehe, C. Numerical computation of algorithmic (consistent) tangent moduli in large-
strain computational inelasticity. Comput. Method. Appl. M. (1996) 134:223–240.

10



J. Kochmann, T. Brepols, S. Wulfinghoff, B. Svendsen and S. Reese

[7] Moulinec, H. and Suquet, P. A numerical method for computing the overall response
of nonlinear composites with complex microstructures. Comput. Method. Appl. M.

(1998) 157 (1):69–94.

[8] Feyel, F. and Chaboche, J. L. FE2 multiscale approach for modeling the elastovis-
coplastic behaviour of long fibre SiC/Ti composite materials. Comput. Method. Appl.

M. (2000) 183:309–330.

[9] Reese, S. On the equivalence of mixed element formulations and the concept of re-
duced integration in large deformation problems. Int. J. Numer. Meth. Eng. (2002)
3:1–33.

[10] Lahellec, N. and Michel, J. C. and Moulinec, H. and Suquet, P. Analysis of inhomo-
geneous materials at large strains using fast Fourier transforms. IUTAM Symposium

on computational mechanics of solid materials at large strains, Solid mechanics and

its applications (2003) 108:247–258.

[11] Liu, B. and Raabe, D. and Roters. F. and Eisenlohr, P. and Lebensohn, R. Compar-
ison of finite element and fast Fourier transform crystal plasticity solvers for texture
prediction. Model. Simul. Mater. Sc. (2010) 18.

[12] Zeman, J. and Vodrejc, J. and Novak, J. and Marek, J. Accelerating a FFT-based
solver for numerical homogenization of a periodic media by conjugate gradients. J.
Comput. Phys. (2010) 229 (21):8065–8071.

[13] Eisenlohr, P. and Diehl, M. and Lebensohn, R. A. and Roters, F. A spectral method
solution to crystal elasto viscoplasticity at finite strains. Int. J. Plasticity (2013)
46:37–53.

[14] Spahn, J. and Andrae, H. and Kabel, M. and Müller, R. A multiscale approach for
modeling progressive damage of composite materials using fast Fourier transforms.
Comput. Method. Appl. M. (2014) 268:871–883.
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