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1   INTRODUCTION 

 Typical Functionally Graded Material (FGM) plate structures are characterized by a 

continuous variation of the material properties over the thickness direction by mixing two 

different materials, metal and ceramic. Ceramic with the low thermal conductivity can resist 

high thermal environment while metal is strong with mechanical load. The metal–ceramic FGM 

plates are widely used in aircraft, space vehicles, reactor vessels, and other engineering 

applications.  

Research works in FGM structures has been done in the recent years. For axisymmetric 

plates and shells, we cite among others, the following works: Reddy et al. [1] study the 

axisymmetric bending of through the thickness functionally graded circular plates using the 

Mindlin plate theory. Ma et al. [2] analyse the axisymmetric nonlinear bending behaviour of 

functionally graded circular plates, under mechanical and thermal loading. Gunes and Reddy 

[3] present the geometrically nonlinear analysis of functionally graded circular plates. Li et al. 

[4] study by the stress function method the problem of transversely isotropic functionally 

graded materials plates. Tran et al. [5] present a NURBS-based isogeometric approach for static, 

dynamic and buckling analysis of the FGM plates using HSDT model. Zhang and Zhou [6] 

presented a model for FGM circular plates based on a physical neutral surface and a higher-

order shear deformation theory. 

Elastoplasticity analysis has been little investigated in FGM structures. Most of the published 

works involves plate/shells structures made of isotropic materials. In this paper is presented the  
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static bending analysis of functionally graded of axisymmetric plate-shell type structures 

subjected to axisymmetric loading. The formulation includes the global response of the plate-

shell structures, the through-thickness stress distribution calculations, involving variation of 

volume fractions. The solutions are obtained using a finite element model based on the 

Zienckiewics et al. [7] conical frustum simple finite element with 2 nodes, and 3 degrees of 

freedom per node. The solutions of some illustrative plate examples are performed, and the 

results are presented, discussed, and compared with numerical alternative models when 

available. 

2  FORMULATION OF P-FGM MODEL  

 An FGM is made by mixing two distinct isotropic material phases, for example a ceramic 

and a metal. In this work the material properties of an FGM plate structure is assumed to change 

continuously throughout the thickness, according to the volume fraction of the constituent 

materials, given by the Power-Law function – Bao and Wang [8]. In addition, the continuous 

variation of the materials mixture is approximated by using a certain number of virtual layers k 

throughout the thickness direction - layer approach. The volume fraction of the ceramic and 

metal phases for each virtual layer is defined according to the power-law, Moita et al. [9]: 
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where z  is the thickness coordinate of mid-surface of each layer. 

 

 Once the volume fraction k
cV  and 

k
mV  have been defined, the material properties, as for 

example Young’s modulus E or thermal expansion coefficient α of each layer of an FGM can 

be determined by the rule of mixtures:  

                                        m
k
mc

k
ck E VE VE     ;    m

k
mc

k
ck  V V                            (2) 

3   STRAIN-DISPLACEMENT RELATIONS. 

A typical axisymmetric shell is shown in Figure 1. For this type of shells, subjected to 

axisymmetric loading, the displacement of  a point on  middle  surface  of meridian  plane,  is  

 

 

Figure 1. Axisymmetric shell. 
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determined by two components us and w in the tangential (s) and normal (n) directions, 

respectively. It because, for these conditions 0u  and 0dd  . 

As we are considering a straight finite element, R ,  from the Kirchhoff type strain, and 

imposing a constraint C(w, )  dw / ds 0,     introducing the shear strain   defined as

 ds/dw , the linear strain components in the local curvilinear system are those given in 

Zienkiewics et al. [7]. 

3.1  Local-global transformations. 

For axisymmetric shells, Figure 1, the relations between local (s,n) and global (r,z) 

coordinates as well as local-global displacements are given by: 
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For strain-displacements relations, comes: 

                       

   
m

b

s

s r z

r

s r

r

sn r z

u / s cos u / ds sin

u / r

d / ds

( cos ) / r

du / ds) sin  (du / ds) cos  





       
           

        
           

       

                            (4)                      

3.2  Stress-Strain Relations and Constitutive Relations of FGM Structures. 

 The stress-strain relations for each virtual layer k, can be written as k k k   Q   
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where kQ is the elasticity matrix. Due to nonsymmetrical grading of the material through the 

thickness, the bending-stretching coupling exists.The constitutive equation is then given by: 
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where ̂  are the resultant forces and moments, and D̂ the constitutive matrix. 
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4  ELASTO-PLASTIC FORMULATION FOR FGM STRUCTURES 

 The present work uses an extended Tamura–Tomota–Ozawa (TTO) model to describe the 

elastic–plastic behaviour of ceramic/metal FGM. The ceramic constituent is assumed elastic 

when deformation takes place. The elastoplastic deformation occurs mainly by the plastic 

flowing of the metallic constituent. The TTO model, or also called the modified rule-of-mixture, 

uses the stress-strain transfer parameter q, which depends on the constituent material properties 

and the microstructural interaction in the FG material, [10]. Using this parameter, the thickness 

variation of Young’s modulus and of the yield stress are obtained [10]: 
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4.1  Elastoplastic constitutive relation 

To carry out elastoplastic analysis, the material is assumed to follows the von-Mises yielding 

criterion. The yield condition can be expressed as, Nayak and Zienckiewics [11]: 

                                      p YF ,  ,  f 0                                       (8) 

where p is the accumulated plastic strain, and where the yield level, Y , can be a function of 

the strain hardening parameter κ.  

 For the case of an isotropic material, and for each layer of a FGM structure, the effective 

stress , is given by: 
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  After development, an incremental constitutive elastoplastic relation is given by [11]:  
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where ep
Q  is the elastoplastic matrix, and dF / d a  is the flow vector. 

5   FINITE ELEMENT APROACH.  

 In the present work is used a conical frustum – straight finite element, Figure 4, with  two 

nodes and three degrees of freedom per node, the displacements and rotation, ri zi iu , u   .  The 

simplest interpolation is given by Zienkiewics et al. [7]: 

                            2/)1(N ii                           (11) 

for an element with nodes at i 1  , with L/s 2 ii  , i s L / 2      
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The nodal displacement vector, is then given by: 
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Figure 4. Conical frustum element 

 The linear strains can be represented by: aB  ; 
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 Accounting for nonlinear response, nonlinear strains have to be considered. For this type of 

structures the nonlinear strain, in local system is   2ds/dw 2/1NL  , which is expressed as  
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5.1  Elastoplastic analysis 

 The virtual work principle applied to elastoplastic analysis is given by: 
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 Entering with the previous definitions, and integrating through the thickness, Equation (16) 

can be written in the following form:  
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5.2   Geometrically nonlinear analysis 

 The virtual work principle in conjugation with an updated Lagrangian formulation is used, 

where a reference configuration is associated with a previous time t and the actualized 

configuration is associated with the current time t Δt . The linearized equilibrium equations 

for nonlinear static response, written for a finite element, are given by, Bathe [12] 
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where the linear and geometric stiffness matrices, external force vector (including distributed 

and concentrated transverse loads f and Fc, as well as in-plane load t), and internal force vector 

are given by: 
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and where 
t e t t t tdA 2  r ds  r L d     . 

 

6   APPLICATIONS 

6.1  Linear analysis of circular FGM plate under pressure load. 

 In this section, the behaviour of a FGM clamped circular plate, Figure 5, with thickness h 

and radius R made of titanium/zirconium is studied (Em = 110.25 GPa, mν =0.288, Ec = 

278.41GPa, cν = 0.288).  Based on the rule of mixture, the effective modulus is estimated 

following Reddy et al. [1]: m c m cE(z) (E E ) V  E     with   p k
m h/z5.0V  ; 

k
m

k
c V1V  . 
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This equation shows that as p = 0, the plate is fully metal and as p=∞, the plate is fully ceramic. 

Under uniform pressure, the normalized maximum deflections (at the centre of the plate) are 

given by 4
c c cw w  (64 D  / q R ),

3 2
c cD E h /12(1 )  , and shown in Table 1. An excellent 

agreement is observed between the results obtained with the present model and the results 

obtained using Mindlin theory [1], elasticity theory [4] and HSDT theory [5]. The deformed 

shapes under transverse pressure load ( MPa 0.1q0  ) for different gradient index and 

h/R=0.05, are shown in Figure 6. As expected the full metal and ceramic plates ate the 

maximum and minimum deflections according to the respective Young modulus. Also the 

through-thickness distribution of nondimensional radial stress is presented in Figure 7. A 

comparison with the solution obtained by Li et al. [4] reveals to be very good.  

 

 

Figure 5. Clamped circular plate, subjected to a uniform load 

 

Table 1. Dimensionless central deflection cw of FGM clamped circular plate. 

h/R Source Power index p 

0 2 4 10 50 100 metal 

 Li[4] 2.561 1.405 1.284 1.157 1.049 1.032 1.015 

0.05 Reddy[1] 2.554 1.402 1.282 1.155 1.046 1.029 1.011 

 Tran[5] 2.548 1.399 1.279 1.152 1.044 1.027 1.009 

 PM 2.560 1.404 1.283 1.155 1.043 1.024 1.015 

 Li[4] 2.667 1.456 1.329 1.201 1.091 1.074 1.057 

0.1 Reddy[1] 2.639 1.444 1.320 1.190 1.080 1.063 1.045 

 Tran[5] 2.630 1.439 1.314 1.186 1.076 1.059 1.042 

 PM 2.643 1.446 1.321 1.189 1.076 1.058 1.046 

6.2  Nonlinear Analyses of Circular FGM Plate under Uniform Pressure Load. 

 A clamped P-FGM circular plate with radius-to-thickness ratios R/h=20 is considered. The 

constituents of the FGM are the Si3N4 and SUS304 with the following materials properties 

Ec=322.27 GPa, Em = 207.79 GPa, νc =0.24, νm = 0.318, and the volume fraction is defined by 

  p 
c h/z5.0V  . The radius of circular plate is R=0.5 m, and the thickness is h=0.025 m. A 

geometrically nonlinear analysis (GNL) under uniform pressure load at room temperature (300 

K) is performed. The plate is modelled by 20 finite elements (66 DOFs). Defining the 

nondimensional loads and displacements respectively by 
4 4

0 mQ = q  R / E h and wc/h,  the load-

displacement paths for centre point of the plate obtained using the present model  are shown in 

Figure 8 for different gradient p-index. A very good agreement with the results obtained by 

Zhang and Zhou [6] is observed. 
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Figure 6. Deflection shapes of a clamped circular FGM plate for different p-index 

 

Figure 7. Through-thickness distribution of nondimensional stress for different p-index 

 

Figure 8. Nonlinear load-displacement paths of a clamped FGM pate. 
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 Next, considering the same plate, an elastoplastic analysis (EPL) with Ym 400 MPa    is 

also performed. In Figure 9 are present the results obtained using the present model. From 

Figures 8 and 9 we observe a very significant difference between the maximum loads allowed 

considering the elastoplastic and the geometrically nonlinear behaviours. Thus, for real 

structures, the combination of these two behaviours should be considered to obtain the realistic 

response of the structures.  This response for the present application is shown in Figure 10. 

 

 

Figure 9. Load-displacement paths in elastoplasticity for a clamped FGM plate. 

6.3  Nonlinear analysis of a pressure vessel with torispherical end   

The static deformation of a FGM cylindrical pressure vessel with torispherical end is 

analysed. This structure is represented in Figure 11, where R=Di=135 mm, t=1.27 mm, r1=10.1 

mm, and is made of constituents zirconia and aluminum (Em = 68.9476 GPa, mν =0.3, Y =247 

MPa, Ec =151.0 GPa, cν = 0.3), and is subjected to an inner pressure load p0=1 MPa. The uz 

displacement at the apex for different p-index are present in Table 2. The elastoplastic analysis 

is also performed. Using the present model the collapse pressures as a function of p-index are 

also given in Table 2. The deformed shapes (enlarged 20 times) for metal and gradient index 

p=0.5 are shown in Figure 12. The deformed shape in elastoplastic behaviour for metal 

(enlarged 10 times), for limit uniform pressure of 2.6 MPa, is also shown in Figure 12, with the 

plastic zone in yellow. In Figure 13 are shown the elastoplastic load-displacement paths for 

metal and gradient index p=0.5. 
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Figure 10. Load-displacement paths for different behaviours of a FGM circular plate 

 

         

                   Figure 11. Pressure vessel                       Figure 12. Deformed shapes of the pressure vessel 

Table 2. Displacement (mm) for p=1.0 MPa, and collapse pressure in FGM 

 pressure vessel with torispherical ends 

 

 

                        p-index 

  0.5         1.0         2.0        metal 

Deflection uz  0.189  0.213  0.241  0.337 

Collapse p  3.46  3.36  3.25  2.60 
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Figure 13. . Load-displacement paths in elastoplasticity for the FGM pressure vessel. 

 

The responses for the present application, considering the metal phase, with different 

mechanical behaviours are shown in Figure 14. From this Figure, it is observed that real 

behaviour (GNL+EPL) gives a limit pressure greater than the limit pressure obtained using a 

pure elastoplastic analysis. 

 

 

Figure 14. Load-displacement paths for different deformation behaviours of a pressure vessel 

 

7 CONCLUSIONS 

 - A finite element model for the static bending, buckling and free-vibration analyses of 

functionally graded (FGM) circular plates and axisymmetric shells under axisymmetric loading 

is presented. The model is based on the classic plate theory that takes into account shear 

deformation through a penalty function, associated with a simple and fast conical frusta finite 

element with only 2 nodes and 3 degrees of freedom per node.  
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 - The reduced number of finite elements necessary to model even complex structures 

combined with the use of only twenty virtual layers to model the continuous variation of the 

mechanical properties through the thickness, results in an extremely lower computational time 

for all FGM applications.  

 - A good to very good accuracy is found when the results obtained by the present model 

are compared with solutions available and obtained by alternative models. Some applications 

are also proposed, which can be used as benchmark test. 

 - As final conclusion, the present model is a very simple, accurate, and fast finite element 

model for the analysis of axisymmetric shells under axisymmetric loads.  
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