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Abstract. Open-cell ceramic foams are used as filters during casting processes to reduce
the non-metallic inclusions and the turbulence of the metal flow. Based on that, these
foams have to withstand high temperature loadings and so elastic-plastic deformations
can occur. The macroscopic elastic deformation behaviour of such foam structures was
investigated and described successful in the literature. However, the plastic deformation
behaviour strongly depends on the micro-structure and bulk material plasticity.

The current work presents a homogenized material model based on an adapted yield
function to describe the elastic-plastic deformation behaviour of open-cell foam structures.
The form of the yield function is not specified completely a priori. The specific shape is
interpolated between results of finite element (FE) simulations of cell models using neural
networks.

This modelling approach is proved for simple plasticity models, e.g. von Mises and
Drucker-Prager, and further applied to an exemplary foam structure as a representative
volume element (RVE) using a simple bulk material plasticity. The proposed model shows
a good accordance for all tested elastic-plastic load cases and a reduction of the numerical
effort by a factor of ≈ 200 for the simulation of the used simple foam structure.

1 INTRODUCTION

Within the collaborative research centre CRC 920 ”Multi-functional filter for Metal
Metal Filtration – A Contribution towards Zero Defect Materials” at the TU Bergakademie
Freiberg, Germany, multifunctional open-cell foam filters, made of ceramic, are investi-
gated to reduce the amount of non-metallic inclusions and turbulence of metal flow. Due
to the high temperatures of the melt, no sufficient experimental observations can be
performed on the foam, whereas numerical simulations of this process are necessary to
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evaluate the integrity of the filter during the casting process. However, previous inves-
tigations indicated a plastic behaviour of the foam at temperatures in the range of the
molten metal, cf. Solarek et al. [1]. The chemical composition and manufacturing process,
e.g. coking temperature, have a great influence to the material properties, cf. Soltysiak
et al. [2].

Using finite element (FE) simulations of fully discretized structures, several researchers
investigated the elastic and plastic deformation behaviour of foams. The foam structure
(topology and geometry) has a great influence on the yield surface [3] and on the elastic
behaviour [4] of the foam. Additionally, the plastic deformation behaviour strongly de-
pends on the micro-structure and the bulk material plasticity, cf. Wang and McDowell [3]
and Demiray et al. [5], respectively.

Storm et al. [6] investigated the elastic deformations of foams and presented efficient
formulae for the effective elastic moduli. However, the inelastic deformation behaviour of
highly porous materials can be complex, depending strongly on the topology of the foam
structure. Isotropic, kinematic and distortional hardening can occur. Consequently, the
formulation of a closed form constitutive model is a very challenging task. In this work,
an adaptable yield surface function is used, to capture the complex inelastic deformation
behaviour and the large number of influence parameters (material and structural prop-
erties). The adaptable part of the proposed material model is represented by a neural
network (NN).

NNs have been previously used in the literature to approximate material stiffness ma-
trix [8, 9], strain energy density [10], drag stress for isotropic hardening and back stress
for kinematic hardening of a given plasticity model [11] and for the identification of pa-
rameters of material laws [7, 12]. The great advantage of NNs is their adaptability to the
given problem, but the generalization capability has to be checked to avoid over-fitting.
The used NNs of this work are designed, trained and evaluated using the python library
ffnet presented by Wojciechowski [7], see section 3.1.

2 FINITE ELEMENT MODEL OF A FOAM STRUCTURE

The simulation of whole foams requires very large meshes and enormous computational
power based on their complexity. Consequently, representative volume elements (RVE),
which are computationally more efficient, are often used for such simulations. During this
work, a two dimensional (2D) structure is used, which is a simple 2D cross like structure
consisting of four struts having the same length, as shown in Fig. 1.

The difference of the displacement vector between two homologous points at opposite
boundaries j+ (xj+i = lRVE/2) and j− (xj−i = −lRVE/2) of the 2D RVE is

ũj+i − ũj−i = ∆ūji = lRVE ε̄ij (1)

with i, j = 1, 2, the macroscopic relative displacement ∆ūji and the RVE size lRVE. Ad-
ditionally, the homogenized (macroscopic) stresses and strains are σ̄ij and ε̄ij, which are
the volume weighted averages of the microscopic stresses and strains σ̃ij and ε̃ij

σ̄ij =
1

VRVE

∫
σ̃ijdV, ε̄ij =

1

VRVE

∫
ε̃ijdV, (2)
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Figure 1: FE mesh for used 2D-model.

evaluated at reference nodes. The equilibrated microscopic tractions t̃j have opposite
signs

t̃j−i = −t̃j+i . (3)

More information about the used periodic boundary conditions and homogenization is
given by Storm et al. [6].

3 NEURAL NETWORK FOR MODELLING PLASTIC DEFORMATIONS

In the following, an approach is described to model the macroscopic elastic-plastic
deformation behaviour of foam structures by an adaptable yield surface using neural
networks.

3.1 Neural network

Feed forward neural networks (FFNN) are used in the present study, where each net-
work layer is fully connected to the directly preceding layer. The following layers are used:
one input layer (with n nodes), one hidden layer (with m nodes) and one output layer
(with k nodes), as depicted in Fig. 2. At all hidden and output layer nodes the sigmoid
function

h(vj) =
1

1 + e−vj
(4)

is evaluated as activation function. Here, vj is the nodal input value and represents the
sum of the weights wl of all connections l from the nodes of the preceding layer to node
j and the bias bj of this node

vj =
∑
l

wl vl + bj. (5)

To approximate a given data set, the free parameters of n ·m+m ·k weights and m+k
biases have to be determined. This is done by minimizing the error function

errtrain =
1

2

∑
p∈T

∑
i

(
val

(p)
i − NN

(p)
outi

)2

(6)
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Figure 2: Structure of neural network (input layer with n nodes, one hidden layer with m
nodes and output layer with k nodes with i = n ·m + m · k different weights wi at solid
arrows and j = m+ k different biases bj at dashed arrows).

between the output of the NN and the given output data, with p as the unique input
pattern of the training data set T , vali as the values of the training data and NNouti as
the output of the NN for the corresponding input pattern. This parameter optimization is
called ’training’ for NNs and is done using a Newton conjugate gradient algorithm based
on the first derivative of the NN with respect to the weights. For the utilised python

library ffnet [7], the training is done by the function fmin tnc of the library SciPy.
One disadvantage of the training of NNs is the possibility of over-fitting. There are

two different ways to avoid over-fitting while keeping a good approximation of the data
set. First, the number of training pattern has to be greater than two times the number
of free parameters of the NN

|T | > 2 · (n ·m+m · k +m+ k) . (7)

The second way is a split of the data set D into the training data set T ⊂ D and a
separate set of evaluation data E with |E| ≈ 10% |D|, which are not part of the training
set E = T , see Fig. 3a. After each training step the error for E is calculated by Eq. (6).
Finally, the weights and biases of the training step with the lowest errE are used, see
Fig. 3b.

3.2 Material modelling

For the description of the microscopic and macroscopic elastic-plastic material be-
haviour, respectively, it is assumed that the total strain εij is the sum of the elastic εel

ij

and plastic strains εpl
ij

εij = εel
ij + εpl

ij (8)
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Figure 3: Different data sets and error values versus training time for neural network.

for small deformations. In addition, it is assumed that the stresses can be calculated by
Hooke’s law

σij = Cijklε
el
kl = Cijkl

(
εkl − εpl

kl

)
(9)

with Cijkl as the stiffness tensor. The evolution of the plastic strains is described by the
non-associated flow rule

ε̇pl
ij = ξ

∂g

∂σij
(10)

whereby ξ is the plastic multiplier and g the plastic potential function. The model is
complemented by a yield function f(σij), which satisfies the loading-unloading condition

f ≤ 0, ξ ≤ 0, f · ξ = 0. (11)

In the present work, two different microscopic yield criteria are investigated in com-
bination with isotropic linear elasticity (elastic modulus Ẽ and Poisson’s ratio ν̃): The
von Mises criterion with associated flow (g̃ ≡ f̃) and the Drucker-Prager criterion with
non-associated flow (g̃ 6= f̃).

The yield function for both criteria has the form

f̃ (σ̃ij) = q̃ + αĨ1 − (1− α) σ̃Y (12)

with the equivalent stress

q̃ =

√
3

2

(
σ̃ij −

1

3
Ĩ1δij

)(
σ̃ij −

1

3
Ĩ1δij

)
, (13)

the first stress invariant Ĩ1 = σ̃ii of the microscopic stresses (planar stress state, based on
2D models in this work), the parameter α, and the yield stress σ̃Y. The plastic potential
has the form

g̃ (σ̃ij) = q̃ + βĨ1, (14)
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with parameter β. For α = β = 0 Eqs. (12) and (14) represent the von Mises criterion.
In contrast, for α 6= 0 Eq. (12) describes the Drucker-Prager criterion. Additionally, for
the second criterion β 6= α is used for non-associated plasticity.

For both microscopic yield criteria, the Ludwik equation is chosen for the yield stress

σ̃Y = σ̃0
Y + K̃

(
ε̃pl

eq

)ñ
(15)

with the microscopic equivalent plastic strain rate

˙̃εpl
eq =

√
˙̃εpl
ij

˙̃εpl
ij (16)

and the hardening parameters K̃ and ñ. A schematic stress-strain curve is depicted in
Fig. 4 using the Ludwik equation for the microscopic yield stress.

0 1 2 3 4 5 6 7 8 9 10
E/ 0

Y

0

1

2

3

/
0 Y

elastic
plastic

Figure 4: Scheme of elastic-plastic deformation for microscopic yield stress of Eq. (15)
with K̃ = 0.2 Ẽ and ñ = 0.75.

Now, the hybrid material model is described. Thereby, the term ”macroscopic” refers
to the description of the material model for testing the proposed model and additionally
the deformation behaviour at the macroscopic scale for the foam structure. In particular,
only proportional radial loading paths

ε̄ij = λ ε̄∗ij, (17)

with the proportionality factor λ ∈ R+
0 and the macroscopic strain at initial microscopic

yielding ε̄∗ij are considered.
The macroscopic elastic deformation behaviour can be fully described by the tensor

C̄ijkl. For the calculation of C̄ijkl, only three linear independent load cases are needed for
a certain 2D structure, cf. the work of Storm et al. [6]. However, the consideration of the
plastic foam behaviour is a great challenge, because ḡ, f̄ and ξ̄ have to be determined for
each foam structure and strut material behaviour separately.
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Javadi and Rezania [9] proposed a direct correlation between the macroscopic total
strains and the resulting macroscopic stresses by NNs. In this approach, it is only possible
to take into account elastic unloading successfully using a very complex neural network
(many different input variables) to consider the loading history. With a more classical
material modelling way, the form of a macroscopic yield function is postulated and the
devoted material parameters are calculated for a good approximation. Now, a material
modelling approach will be discussed using a more flexible yield function. The assumption
is made that plastic deformations have no significant influence on the elastic deformation
behaviour.

The macroscopic yield function is postulated to have the form

f̄NN(σ̄ij) =
√
σ̄ijσ̄ij − NN(Ī1, ε̄

pl
eq) (18)

with NN(Ī1, ε̄
pl
eq) as a neural network for the adaptable part to the specific form of the

yield surface, depending on the first stress invariant Ī1 and the macroscopic equivalent
plastic strain ε̄pl

eq. NN(Ī1, ε̄
pl
eq) is trained based on stress-strain curves with (microscopic)

plastic deformations, cf. dashed line in Fig. 4, and its structure is depicted in Fig. 5.
The used yield function of Eq. (18) can represent the investigated microscopic yield

criteria based on the chosen input variables of the NN: the first stress invariant and the
equivalent plastic strain. The form of the yield function is not specified a priori like in the
work of Furukawa and Hoffman [11]. Consequently, a wide range of plasticity models can
be considered. The yield function of Eq. (18) used in this work captures only isotropic
and distortional hardening. Based on monotonously proportional radial loading paths, it
is not possible to measure kinematic hardening and so it is not considered here.

hid
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hid
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w
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1

Figure 5: Structure of neural network NN(Ī1, ε̄
pl
eq) for adaptable yield surface of Eq. (18).

Correspondingly, the macroscopic flow rule, Eq. (10), becomes

˙̄εpl
ij = ξ̄

∂f̄NN

∂σ̄ij
= ξ̄

(
σ̄ij√
σ̄klσ̄kl

− ∂NN(Ī1, ε̄
pl
eq)

∂Ī1

δij

)
(19)
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for associated plasticity (ḡ = f̄) and

˙̄εpl
ij = ξ̄

∂ḡ

∂σ̄ij
(20)

for non-associated plasticity. The quadratic (second order) norm gives∥∥∥ ˙̄εpl
ij

∥∥∥ =
√

˙̄εpl
ij

˙̄εpl
ij = ξ̄

√
∂ḡ

∂σ̄ij

∂ḡ

∂σ̄ij
= ξ̄

∥∥∥∥ ∂ḡ∂σ̄ij
∥∥∥∥ (21)

yielding

˙̄εpl
ij =

∥∥∥ ˙̄εpl
ij

∥∥∥︸ ︷︷ ︸
ξ̄∗= ˙̄εpleq

∂ḡ
∂σ̄ij∥∥∥ ∂ḡ
∂σ̄ij

∥∥∥ . (22)

Therein, ∂ḡ
∂σ̄ij

/
∥∥∥ ∂ḡ
∂σ̄ij

∥∥∥ are directions in the macroscopic strain space. This means, a second

neural network is used for the consideration of the plastic flow vector for non-associated
plasticity with the same structure as the NN for Eq. (18) based on an isotropic ḡ (Ī1 and
ε̄pl

eq as input variables and values of the flow vector as output variables)

∂ḡ
∂σ̄ij∥∥∥ ∂ḡ
∂σ̄ij

∥∥∥ = NN(Ī1, ε̄
pl
eq). (23)

4 VERIFICATION WITH ANALYTICAL MATERIAL MODELS

To investigate the feasibility of the proposed hybrid material model based on an adapt-
able yield function, the elastic-plastic stress-strain curve is applied for two simple materials
of the literature (von Mises and Drucker-Prager) with the Ludwik equation for the yield
stresses, with K̃ = 0.2 Ẽ and ñ = 0.75 in Eq. (15).

4.1 Associated von Mises plasticity

The von Mises yield criterion is evaluated for 19 different equispaced load paths in the
principal strain space. The resultant stress-strain curves considering monotonic propor-
tional loading (monotonously increase of proportional factor λ) are used for training of
the adaptable yield function with m = 40 different nodes in the hidden layer of the neural
network.

Afterwards, the stress-strain curves of the proposed hybrid model are compared with
the results of the used elastic-plastic analytical model for three different loading paths
with partial unloading. These stress-strain curves are depicted in Fig. 6.

If σ̄11 and σ̄22 have nearly the same magnitude, the agreement is very good, see Fig. 6a
and b. But for the third loading path in Fig. 6c, the derivative of the yield function (for
the plastic flow vector) has a small error. This fact can arise by fitting a function: only the
function value itself is well represented, but not everywhere their derivative. Based on the
error of the derivative and so for the calculated flow vector, these deviations accumulate.
The flow vectors for the last increment of the third load case in Fig. 6 are given in Tab. 1.

8
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Figure 6: Results for different load cases with von Mises (vM) criterion (associated plas-
ticity).

Table 1: First derivatives of the flow potential for the analytical model (von Mises plas-
ticity) and the hybrid model (calculated by Eq. (19)) at the last increment of the loading
path in Fig. 6c.

∂f̄
∂σ̄11

/
∥∥∥ ∂f̄
∂σ̄ij

∥∥∥ ∂f̄
∂σ̄22

/
∥∥∥ ∂f̄
∂σ̄ij

∥∥∥ ∂f̄
∂σ̄12

/
∥∥∥ ∂f̄
∂σ̄ij

∥∥∥
analytical 0.9388 -0.3445 0

f̄NN 0.9244 -0.3814 0

4.2 Non-associated Drucker-Prager plasticity

For the Drucker-Prager criterion the parameters α = 1
3

tan 40◦ and β = 1
3

tan 20◦ are
used to investigate non-associated plasticity. With this criterion 19 different monotonic
loading paths are evaluated in the principal strain space and the stress-strain curves are
used for the training of the hybrid yield surface and the direction of the plastic flow vector.

The stress-strain curves for this analytical model show an almost coincidence to each
other for three different proportional loading paths with partial unloading, see Fig. 7.

9
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Figure 7: Results for different load cases with Drucker-Prager (DP) criterion (non-
associated plasticity).

5 RVE OF A FOAM STRUCTURE

The proposed material model is also applied for the elastic-plastic deformation be-
haviour of a simple foam structure shown in Fig. 1. For this RVE, numerical simulations
are done using the FE code ABAQUS [13] with isotropic linear-elastic and isotropic ideal-
plastic (K̃ = 0 in Eq. (15)) material based on the von Mises criterion at the microscale.
The plastic parts of the macroscopic stress-strain curves of 19 different equispaced mono-
tonic loading paths in the macroscopic principal strain space are used for the training of
both neural networks (one for the adaptable yield function and one for the direction of
the flow vector). The plastic strains are calculated using Eq. (9) based on an assumed
unloading. Both neural networks have m = 40 different nodes in the hidden layer.

Afterwards, three different loading paths (ε̄22 = ε̄11, ε̄22 = −ε̄11 and ε̄22 = −1
3
ε̄11)

with partial unloading are evaluated using FE simulations with a fully discretized foam
structure and using the proposed hybrid material model based on neural networks. The
resultant stress-strain curves are depicted in Fig. 8.

All parts of the investigated stress-strain curves show a very good agreement. This
means that the plastic deformations as well as the deformations during a partial unloading
can be described very well with the proposed hybrid NN material model. It has to be
noted, that the computational effort of the homogenized approach is drastically lower, cf.
Tab. 2. It will be even better for 3D structures.

Table 2: Numerical effort of fully meshed foam structure and hybrid material model at
the same computer for one load case of Fig. 8.

fully meshed NN

number of elements 1900 1

CPU time 390 s 2 s

10
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Figure 8: Results for different load cases at foam structure (fully meshed (fm) and hybrid
material model (NN)) with microscopic perfect von Mises plasticity (K̃ = 0 in Eq. (15)).

The used foam structure has a very large anisotropic deformation behaviour. To take
this fact into account, an extension is needed of the macroscopic yield function in Eq. (18).

6 CONCLUSIONS

In this research a hybrid constitutive material model for elastic-plastic deformation be-
haviours is developed. This hybrid model has an adaptable yield surface. It was verified
using two different material models from the literature with associated and non-associated
plasticity. Additional, it was applied to numerical homogenisation of the complex macro-
scopic elastic-plastic deformation behaviour of an open-cell foam structure. The numerical
effort can be reduced essentially (by a factor of nearly 200) using the hybrid NN material
model.

Ongoing research of the authors is aiming at an investigation of the deformation be-
haviour of foam filters using several RVEs. Therefore an increase of the number of the
input variables for the neural networks is needed for macroscopic anisotropic yield sur-
faces and a formulation for the material tangent. Furthermore, it is possible to use the
proposed approach to investigate 3D foam structures under 3D loadings by increasing the
number of nodes per layer of the neural networks. Two open topics do remain: first, the
verification of arbitrary loading directions (complex and non-proportional) and second,
the applicability to finite deformations.
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