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Abstract. This An analytical approach based on the Rayleigh method is adopted to calculate 

the buckling load of an actual 46-m-high concrete pipe, taking into account the geometric 

stiffness, functions of the concentrated forces, and self-weight of the structure. Stability analysis 

that included the self-weight of structural elements was originally discussed by Euler (1774), 

but he did not succeed in obtaining a satisfactory solution. The problem was finally resolved by 

Greenhill in 1881. The structural pipe analyzed in this work is made of concrete and its 

geometric nonlinear behavior and imperfections are linearized by reducing the structural 

stiffness. The material is considered to be viscoelastic with reduction of the flexural stiffness to 

consider the material non-linearity and creep is taken into account by the criteria from Eurocode 

2. The ground is modeled as a set of distributed springs. Then, the critical buckling load is 

calculated analytically and dynamically defined to different instants along time after the 

structure to be loaded. Modulus of elastic and specific deformation on time are also obtained. 

Finally, the structural stiffness is evaluated. Reductions of 25.15% to the modulus of elasticity 

and deformation, and of 21.08% to the critical load of buckling for analysis performed at zero 

and four thousand days were found.  
 

 

1 INTRODUCTION 

Frame structures modeled as columns constitute the fundamental elements of various 

industrial applications. A column represents a continuous structural compression member 

whose vibrations are governed by nonlinear partial differential equations for which exact 

analytical solutions cannot be found [1]. The compressive capacity of a column can be 

quantified in various ways, including the conservative Euler load [2]. The elastic buckling load 

of a pin-ended column, an important design parameter of slender columns, was first determined 

by Euler in 1774 [3]. However, Euler found it difficult to include the effects of the self-weight 

of the column in its buckling response. Although the problem was finally solved by Greenhill 

in 1881 [4], the inclusion of the self-weight of a column has continued to be a topic of extensive 

mathematical discussion. Euler buckling, defined as the phenomenon in which an elastic 

member buckles under a sufficiently large compressive axial load, is perhaps the simplest and 

the most widespread type of column instability, the behavior of which has been confirmed by 
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Lubbers, van Hecke, and Coulais [5].  

A continuous system as a column can readily be reduced to a single-degree-of-freedom 

(SDOF) system; thus, the modes in which the system will deform are restricted and the 

properties of the system can be expressed as functions of generalized coordinates. This 

technique was proposed by Rayleigh in his study of elastic system vibration, and his equations 

were found to be valid over the entire domain of the problem [6]. However, most actual 

structures are complex systems because their properties vary along their length. In such cases, 

the integrals obtained using the Rayleigh method can be solved within the limits established for 

each interval, i.e., the generalized properties can be calculated for each discrete segment of the 

structure, as defined by its geometry within that segment. 

To analytically define the critical load of buckling for the case modeled in this study, all the 

elastic stiffness components are considered in the calculation, including the conventional 

stiffness, which depends on the material behavior, the geometric stiffness, which depends on 

the normal force acting on the structure, see [7] to [10], and the soil parcel, which accounts for 

the soil-structure interaction. It is important to note that the soil-structure interaction cannot be 

ignored, particularly in the case of a monopile foundation, because it may significantly 

influence the dynamic behavior of the structure [11]. Further, the influence of the normal force 

on the stiffness of unidimensional systems was examined by Wahrhaftig and Brasil, who 

studied a problem involving a significantly deformed beam [12]. 

The structure selected for this study is a slender reinforced concrete (RC) pipe for which the 

critical buckling load was calculated from a dynamic perspective. The nonlinearity of the 

material was computed by reducing its flexural stiffness, as seen in [13], reflecting the 

development cracking in the concrete, which are dependent on the magnitude of the stress. 

Because the structure examined in the present study is extremely slender, the effects of creep 

significantly influence the calculated critical buckling load. Creep is a mechanical phenomenon 

that typically occurs in viscoelastic materials such as concrete, and it is an intrinsically 

nonlinear material property. The mathematical model for creep employed in the present study 

complies with the Eurocode criteria. Therefore, the primary nonlinearity considered is 

geometric, and it is solved by computing the second-order geometric stiffness parcel. The 

effects of material nonlinearity are captured by reducing the flexural stiffness, and the effects 

of creep are computed according to the Eurocodes [14]. 

2 LONG-REINFORCED CONCRETE PIPE WITH VARIABLE GEOMETRY 

The problem evaluated in the present study involves calculating the critical buckling load of 

an actual slender reinforced concrete pipe with variable geometry that presents both geometrical 

and material nonlinearities (see Figure 1). The geometric details of the evaluated pipe are shown 

in Figure 2, where g denotes gravitational acceleration; Gr means ground; s represents each 

structural segment; S, D and th are the type, the external diameter, and the wall thickness of the 

section; db represents the reinforcing bar diameter; nb is the number of reinforcing bars, and 

c´ is the reinforcing cover. 
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Figure 1. Photos of the tower 

 

 

(a) Geometric details (in “cm”) 

      

(b) Sections and structural segments 

Figure 2. Subject reinforced concrete pipe 

The structure is 46 m high; it has a hollow circular section. The slenderness ratio of the tower 

structure is 334. A set of antennae and a platform are installed at the tip of the structure, 

constituting a total mass of 1097.76 kg. Cables, a ladder, and a guardrail are installed along the 

entire length of the structure, adding a distributed mass of 40 kg/m. The density of the 

centrifuged RC pole was taken as 2600 kg/m3 and the density of the foundation shaft was 

2500 kg/m3. The equipment installed on the tower is summarized in Table 1. 

The foundation is a relatively deep shaft having a bell diameter of 140 cm, bell length of 

20 cm, shaft diameter of 80 cm, and shaft length of 580 cm. The lateral soil resistance is 

represented by an elastic parameter, Sp, equal to 2668.93 kN/m3, providing a total lateral 

stiffness. The concrete resistance was taken as 30 MPa for the pole and 20 MPa for the 
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foundation. The physical nonlinearity of the RC was computed in accordance with the Brazilian 

Association for Standardization (ABNT, 2014), which suggests a 50% reduction in the gross 

moment of inertia [15]. 

 

Table 1. Devices, weights, and corresponding locations on the subject structure 

Device Height Density / unitary mass / lumped mass 

Pipe 6–46 m 2600 kg/m3 

Foundation 0–6 m 2500 kg/m3 

Distributed mass 6–46 m 40 kg/m 

Lumped mass 46 m 1097.76 kg 

 

Because this is an RC structure, it is necessary to account for the presence of the reinforcing 

bars when calculating the moment of inertia, which is accomplished by homogenizing the cross 

section. Therefore, according to the theorem of parallel axis, the factor Fhs, which multiplies 

the nominal moment of inertia of the section in terms of the total moment of inertia of the 

reinforcing steel, in the homogenized section is Fh1 = 1.0199, Fh2 = 1.0568, Fh3 = 1.0811, 

Fh4 = 1.0671, and Fh5 = 1.0859. 

3 CREEP CONSIDERATION 

Creep, which represents a gradual increase in deformation over time, is a typical 

phenomenon noted in concrete structures owing to the viscoelastic nature of the concrete 

material. It is critical to consider creep in the verification of the stability of slender compressed 

members in the ultimate limit state because the stiffness of these members is modified as a 

function of the rheology of the material. Mathematically, creep can be characterized by models 

where the immediate elastic deformation is increased by viscous deformation, resulting in a 

temporal function for deformation. Consequently, the modulus of elasticity must also be 

provided as a temporal function that provides accurate results under normal levels of tension. 

Because of the viscous nature of concrete, even at a constant stress level, the deformation of a 

concrete structural element tends to increase over time. 

The model that accounts for creep in EN 1992-1-1 [14] is based on the CEB-FIP Model 

Code [16]. In the method specified by the Eurocode standard, the effects of and variations in 

creep behavior over time are taken into account. The Eurocodes establish hypothetical and 

model limitations for the calculation of creep, in which the coefficient of creep, φ, is predicted 

as a function of the tangent modulus of elasticity, Ec. The creep deformation of concrete is 

obtained by multiplying the immediate deformation by the creep coefficient. The total concrete 

deformation at time t for a constant temperature is obtained by the sum of the terms for 

immediate deformation, creep, and shrinkage. 

In the method specified by EN 1992-1-1 [14], all the factors related to the concrete, loading, 

and environmental characteristics are calculated as constant values for the studied time interval, 

and they comprise a single result for the coefficient of creep, φ. This coefficient must be directly 

introduced into the equation for slow deformation, and it serves as input data for various 

procedures. The basic equations for determining the creep coefficient of concrete over time use 

the average compressive strength, fcm. The creep coefficient, (t,t0), as defined in Eq. (1). 
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0 0 0( , ) ( , )ct t t t    (1) 

 

The factor φ0, defined by Eq. (2) consists of three other factors. The first, φRH (given by Eq. 

(3) for average concrete compressive strength less than or equal to 35 MPa), accounts for the 

influence of the relative humidity of the environment, RH, and the equivalent thickness of the 

member, h0, which is a function of the cross-sectional area, Ac, and the external perimeter in 

contact with the environment, ue, as defined in Eq. (4). The second factor, β(fcm) (Eq. (5)), refers 

to the direct influence of resistance on φ0, and the third factor, β(t0) (Eq. (6)), refers to the age 

of the concrete, t0, when loading commences. 
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The factor, βc(t,t0) (Eq. (7)), considers a coefficient, βH (Eq. (8) for average concrete 

compressive strength less than or equal to 35 MPa), to regulate the combined influence of 

relative humidity and equivalent thickness by simulating a real case in which the percolation 

path of adsorbed water in a robust section of concrete is so large that the effect of creep due to 

differential moisture is less important compared to that in the case of slimmer sections. 
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Therefore, the creep coefficient can be obtained using Eq. (1), and the temporal function 

describing deformation in accordance with EN 1992-1-1 [26] can be obtained as 
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which leads to a function for the modulus of elasticity with respect to time as follows: 
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where Eci(t0) is the modulus of elasticity when loading commences and Eci(t28) is the modulus 

of elasticity at 28 days. 

 

4 ANALYTICAL DEFINITION OF THE CRITICAL BUCKLING LOAD 

Consider the bar model shown in Figure 3, behaving in a non-damping free manner, to 

approximate the practical problem investigated in this study. The system is under the action of 

gravitational normal forces, originating from the distributed mass (the self-weight, ladder, 

cables, and guardrail) along the length of the tower, and the lumped mass at the tip (the antennae 

and platform). In addition, we consider the following well-known trigonometric function, 

which is assumed to be valid throughout the domain of the structure: 

( ) 1 cos ,
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 
 (11) 

where x is the location of the calculation, originating at the base of the cantilever, and L is the 

length of the column, as shown in Figure 3, where t indicates dependency of the time, L is 

the length of the column, s is a segment,  is a function, E is a modulus of elasticity, I is 

a moment of inertia, N is a normal force, m indicates mass, k is a stiffness, and So is a parameter 

related to the soil. 

 

 

Figure 3. Frame element model in free vibration 
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or variable properties along its length. These properties include the geometry, 

elasticity/viscoelasticity, and density, given by Is(x), Es(t), and ( )sm x , respectively, where s 

denotes the considered segment. Applied springs of variable stiffness kso(x) act as the lateral 

soil resistance until the foundation elevation. To find the analytical solution of the present 

problem, it is necessary to consider the trigonometric function given by Eq. (11), the basic 

assumption of which, as a function of x, effectively restricts the bar to an SDOF system. 

In the case of vibration of a cantilevered column that is fixed at its base but free at its tip, the 

shape function given in Eq. (11) satisfies the boundary conditions of the problem. The use of 

Eq. (11) as a shape function for an actual structure with varying geometry has been validated 

by Wahrhaftig [17]. This validation involved a comparison with a computational solution 

derived using FEM and other mathematical expressions. 

By applying the principle of virtual work and its derivations, the dynamic properties of the 

subject system are obtained. The elastic/viscoelastic conventional stiffness is given by 
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where for a segment s of the structure, Es(t) is the viscoelastic modulus of the material with 

respect to time; Is(x) is the variable moment of inertia of the section along the segment in 

relation to the considered movement, obtained by interpolation of the previous and following 

sections, already homogenized (if it is constant, it is simply Is); k0s(t) is the temporal term for 

the stiffness; K0(t) is the final conventional stiffness varying over time; and n is the total number 

of segment intervals given by the structural geometry. In Eq. (12), obviously, t vanishes when 

the analysis considers a material with purely elastic, time-independent behavior. 

The geometric stiffness appears as a function of the axial load, including the self-weight 

contribution, and is expressed as 
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where kgs(m0) is the geometric stiffness in segment s, Kg(m0) is the total geometric stiffness of 

the structure with n as defined previously, and N0(m0) is the concentrated force at the top, all of 

which are dependent on the mass m0 at the tip. Further, Nj is the normal force from the upper 

segments, given by 

0 0 0( )N m m g  and 
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L
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where m0 is the tip lumped mass at the element joint and ( )sm x  is the mass per unit length 

defined. Then, the total generalized mass is given by 

0 0( ) ,M m m m   (16) 

considering that 
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where ( )sm x  is the mass distributed to each segment s, which is obtained by multiplying the 

cross-sectional area, As(x), by the density, s, of the material in the respective interval. 

Therefore, ( )sm x  is the mass per unit length and m is the generalized mass of the system owing 

to the density of the material, with n as previously defined. If the cross section has a constant 

area over the interval, As(x) will be just As; consequently, the distributed mass will also be 

constant. Similarly, if the mass m0 does not vary, all the other parameters that depend on it will 

also be constant. 

One approach for considering the participation of the soil in the vibration of the system is to 

consider it as a series of vertically distributed springs that act as a restorative force on the 

system. With kSos(x) denoting the spring parameter, the effective soil stiffness (as a function of 

the location x along the length) is generally defined as 

1
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where the parameter KSo is an elastic characteristic consisting of the sum of kSos(x) along the 

foundation depth Ds(x), dependent on the geometry of the foundation, and the soil parameter 

Sops. The soil parameter is considered to be (but need not necessarily be) constant in this case 

in each layer of soil. The variables s and n in Eq. (18) represent segments along the foundation 

and the total number of these segments, respectively. The parameter Sops must be provided by 

a specialist geotechnical engineer, and different methods are used by different specialists for its 

determination. Note that KSo is obtained using Hamilton’s principle (or the principle of virtual 

displacements) by considering the generalized distribution properties of the system, as in the 

case of the other stiffness and mass values. Further, note that the geometric parameters of the 

structure included in previous equations as a function of x are constant over their respective 

intervals. Considering the normal force as positive, we can obtain the total structural stiffness 

as 

0 0 0( , ) ( ) ( ) .g SoK m t K t K m K    (19) 

Finally, the natural frequency, as a function of the time and the mass at the tip, is calculated 

as 

   0 0

0 0

0

( , ) ( , )
( , ) / ( , ) .

( ) 2

K m t m t
m t rd s f m t Hertz

M m





    (20) 

The mathematical procedure described above determines not only the frequency of a 

structure but also the critical buckling load. The criterion relevant to dynamic structures for 

determining the critical buckling load is established by assuming zero frequency at the moment 

when the structure loses its stiffness. As a result, the calculation expresses the load as a function 

of the mass. All the generalized parameters, such as the stiffness, K = K(m0) (Eq. (13)), normal 

force at the top, N = N(m0) (Eq. (15)), and mass, M = M(m0) (Eq. (16)), can be expressed a 

function of the mass at the top. Thus, the frequency can be written in terms of the mass at the 
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top as f = f(m0) = [K(m0)/ M(m0)]
1/2, the critical buckling load is reached when the frequency is 

zero. When introducing creep into the analysis, it is necessary to consider a model that 

represents the viscoelastic behavior of concrete. After the introduction of creep, the frequency 

and critical buckling load become temporal functions because the modulus of elasticity varies 

over time. Therefore, once creep is introduced into the calculation, the frequency can be written 

in terms of the time and the mass at the top as f = f(m0,t) = [K(m0,t)/M(m0)]
1/2, and the resultant 

expression is sufficient to calculate the critical buckling load, determined when the frequency 

is zero at any arbitrary time after the structure is placed in service. 

Taking all the previously explained in consideration, and making the mass m0 at the top of 

the structural pipe to vary, the force acting at the top also varies, as does the frequency of the 

structure varies according to Eq.(20). Thus, the critical buckling load, Nbuck, is defined at zero 

frequency as 

0 0 0( ) ,N m m g and for 
0

0 0 0 ( , ) 0
( , ) 0 ( ) .

c
c buckf t m

f t m N m N


     (21) 

The variation of the critical buckling load with the mass at the top of the structure can be 

observed in Figure 4, where the critical buckling load for the structure can be obtained for any 

stage in its lifetime.  

 

Figure 4. Critical buckling load over time 
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Table 2 presents the results obtained by the analytical procedure. 

 

Table 2. Results of the proposed analytical procedure with respect to time. 

Time 

(day) 

Parameter by Eurocode  Analytical Procedure 

Modulus 

of elasticity (MPa) 

Deformation 

(x 10-6) 

Buckling 

load (kN) 

0 18782.971 2.157 281.120 

90 17050.349 2.566 243.551 

500 14720.481 2.753 230.010 

1000 14404.972 2.813 226.137 

2000 14189.632 2.856 223.433 

3000 14104.568 2.873 222.364 

4000 14058.869 2.882 221.790 

Variation 25.15% 25.15% 21.08% 

 

12 CONCLUSIONS 

- The critical buckling load was also obtained by the analytical process and was 

established as a compressive force of 281.120 kN at time zero and 221.790 kN at 4000 

days, both corresponding to the nullity of the initial first natural frequency, what 

represents a reduction of 21.08%. 

- Because of the creep, the modulus of elasticity and specific deformation have had both 

a variation of 25.15% along 4000 days. 

- Directions for future research include the application of the proposed analytical method 

to other structures. Further, it remains necessary to verify the effects of creep on the 

dynamic behavior of structural models at scale.  
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