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Abstract. The quantification of inhomogeneous uncertain parameters in Finite Element
models is a challenging task in case no direct measurement of these quantities is pos-
sible and when the available data are very scarce. In that case, classical probabilistic
approaches such as Bayes’ method might give unsatisfactory results due to necessary sub-
jective assumptions. The authors recently introduced interval methods to cope with this
situation by introducing an inverse approach to quantify interval field uncertain param-
eters, based on a limited set of indirect measurement data. These methods are based
on the representation of the uncertainty in the responses of the structure as a convex
set, and minimising the discrepancy between the convex set of the model responses and
the convex set of replicated measurement data. This paper gives a brief overview of the
recent developments and aims at giving a tutorial for the practical application of these
new inverse methods.

1 INTRODUCTION

Interval Field Finite Element method were during the last decades introduced as an
alternative to the well-established framework of probabilistic uncertainty representation.
These methods are complementary to the probabilistic framework and are proven to
provide objective estimates of the uncertainty in these models under scarce data, since
the need for the identification of a full probabilistic data description is eliminated [1].
Interval fields were only recently introduced as an extension to this concept to account for
non-homogeneous non-determinism, and can be regarded as a interval counterpart to the
established framework of Random Fields [2]. The description of an interval field is based
on the superposition of nb ∈ N base functions ψi(r) : Ω 7→ R, with r a spatial coordinate,
scaled by independent interval scalars αIi ∈ IR, with IR the space of interval valued real
numbers. The base functions ψi(r) represent a set of uncertainty patterns and describe
the spatial nature of the uncertainty that is modelled by the interval field. The interval
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scalars αIi capture the uncertainty at the input of the model. An interval field is formally
expressed as:

θI(r) =

nb∑
i=1

ψi(r)αIi (1)

However, in order to obtain a realistic model, an objective quantification of nb, α
I
i

and ψi(r) is needed. In case x is not measurable directly, as is for instance the case
when contact stiffness values or component-level material properties are considered, such
quantification is very challenging. The authors proposed a generic methodology for this
identification. The method starts from a set of measurements of the system’s responses,
and represents the uncertainty in this measurements using set theoretical concepts. Sim-
ilarly, also the uncertainty in the responses that is predicted by the interval field FE
model is modelled. Then, the quantification of the interval field parameters consists of
minimising the discrepancy between these two uncertain sets of responses. Also multiple
extensions to the method were presented, as well as two reduction schemes. The complete
overview can be found in [3–11]. This paper combines information from these publications
and aims at giving a concise overview and practical tutorial of the complete methodology
following a case-study approach.

2 INTERVAL FIELD FINITE ELEMENT ANALYSIS

Let M be a deterministic Finite Element model that is used to solve a (set of) differ-
ential equations for zm ∈ Rd through the vector valued function operator g:

M(θ) : zm = g(θ), g : Rk 7→ Rd (2)

with θ ∈ F ⊂ Rk the vector of model parameters and F the sub-domain of feasible
parameters (e.g., non-negative contact stiffness).

The uncertainty that is attributed to θ is modelled as an interval field θI(r) =∑nb
i=1ψi(r)αIi ∈ Ω×F I , with F I ⊂ IRk and IRk the space of k-dimensional interval vec-

tors and Ω the model domain. Note that due to the orthogonality of all αIi , i = 1, ..., k,
all interval scalars are independent by definition. In general the base functions satisfy∫

Ω
ψi(r)ψj(r) = δij, but also non-orthogonal base functions can be applied [2]. Note that

while the realisations of αI are located within a hyper-cubic subspace of Rnb , this is not
the case for θI(r), since ψi(r) provide a measure for the dependence [5].

The interval field FE method then searches solution set z̃m containing the extreme
realizations of zm given the hyper-cubic parameter uncertainty in αI . In general, zm is
not hyper-cubic, but spans a non-convex region in Rd, sinceM provides coupling between
zmi , i = 1, ..., d. Therefore, a direct and general solution to this problem is computationally
intractable. As a result hereof, the solution set z̃m is commonly approximated by an
uncertain realization set z̃m, which is obtained by propagating q well selected deterministic
realizations zmi of the hyper-cubic uncertain input parameters θI :

z̃m =
{
zmi | zmi =M(θi);θi ∈ θI ; i = 1, . . . , q

}
(3)
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These realisations can either stem from a global optimization approach [1] or dedicated
sampling methods such as the Transformation Method [12,13]. Alternatively, direct com-
putation using affine arithmetical approaches are applied [14,15].

3 INVERSE INTERVAL QUANTIFICATION

3.1 Interval field quantification procedure

The general overview of the procedure to quantify non-homogeneous uncertainty in FE
models based on a set of scarce measurement data is illustrated in the workflow shown in
figure 1.

Figure 1: General overview of the methodology

The following paragraphs explain each step in detail. Furthermore, some illustrations
are given to further explain some concepts. These illustrations are based on a numerical
model that predicts the modal behaviour of a simple cantilever beam (figure 2), as de-
scribed in [6]. The 10 first eigenmodes of this model are computed using an FE model
with 10 4-node bilinear shell elements. It is considered that Young’s modulus is subjected
to spatial uncertainty. Measurement data of the 10 first eigenmodes are generated by
sampling from a predefined interval field on Young’s modulus. The presented methods
are applied to quantify this pre-defined interval field using only the measured responses.

Step 1: The first step in the inverse quantification procedure consists of gathering and
preparing the experimental data that is needed for the inverse quantification procedure
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Figure 2: Illustration of the cantilever beam.

by performing t replicated experiments on a physical replica of the considered model.
These measurements are then used to construct a measurement set z̃e. Then, the non-
determinism that is present in these replicated measurements is bounded by its convex
hull Ce, which is formally defined as:

Ce =

{
t∑

j=1

βjz
e
j | (∀j : βj ≥ 0) ∧

t∑
j=1

βj = 1 ; zej ∈ z̃e
}

(4)

with β a vector of weighting factors, such that all elements βj are non-negative and sum
to one. Alternatively, it can also be represented as a set containing he d-dimensional
half-spaces representing the linear inequalities that describe boundaries of Ce :

Ce ≡ Ae(z
e)T − be ≥ 0 (5)

with Ae ∈ Rhe×d, be ∈ Rhee and he the number of half-spaces that are needed to describe
Ce [16]. The preprocessing of the data from different experiments in a dynamic FE model
context is rather straightforward, as the analyst only has to keep track of eigenmode
cross-over or -veering to ensure that the correct measured eigenfrequencies are compared.
This can for instance be ensured by using MAC-based mode tracking [18].

The case of quasi-static models requires a bit more elaboration. Since widely applied
techniques such as extensometers and strain gauges give only a very limited amount
of spatial information on the occurring strains in a quasi-statically loaded specimen, it
is rather cumbersome to quantify non-homogeneous uncertainty using these methods.
Therefore, it was proposed to apply full-field strain measurements such as Digital Image
Correlation (DIC) [9, 17] in this case as they provide strain data with very high spatial
resolution containing up to O(1006) measurement points throughout Ω. These methods
employ cameras to track the displacement of each location in Ω during loading to infer
displacement and strain fields corresponding to each load step. However, two new specific
challenges arise in this context:

1. The coordinate system (CS), in which the measured strains and displacements that
are obtained using these techniques is in general not the same for all t measured
replicas. This is a direct result from the practical difficulties associated with placing
all tested specimens on the exact relative position with respect to the cameras in
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Figure 3: Illustration of the edge detection. Left: original image used in DIC; Middle:
binarised image using Otsu’s method; Right: detected edges in the original image via
Laplacian edge detection

real testing environments. Moreover, these CS are also in general not coincident with
the CS of the corresponding numerical model. This hinders an accurate comparison
of the strain and/or displacement values stemming from the different tests and the
numerical model throughout the model domain Ω. As such, an alignment procedure
is needed to match (1) the CS of all measured replica zej and (2) match these CS to
the CS of the FE model under consideration.

2. The number of measured responses d is in general not the same for all zej since
DIC acts as a highly non-linear low pass filter in the spatial domain. Furthermore,
d usually is also several orders of magnitude larger as compared to the number of
responses that are given by the corresponding FE model. As such, each zej has to be
interpolated to the nodes of the FE model to ensure an accurate comparison.

In order to align the CS of all zej , j = 1, . . . , t, one specimen with reference image fref is
arbitrarily chosen from the set of measured replicas as a reference, and all other images
fi, i = 1, ..., t − 1 of the tested specimens are aligned to this reference fref . In this way,
also the corresponding displacement- and strain fields are aligned, as they are inherently
connected to the images. The alignment is obtained by algorithmically detecting the
edges of the specimens in the reference images using a combination of Otsu’s method
and Laplacian edge detection [18], and fitting these detected edges in a least-squares way
by quantifying the complete image transformation matrix. The detection of the edges is
illustrated in figure 3. The coordinate system of fref is then also aligned to the coordinate
system of the numerical model.

In order to obtain a measured response that corresponds to the location of a computed
response in the FE model, it is proposed to compute the average of all responses zm(rDIC)
that are measured at a location rDIC in the neighbourhood N (rFE) ⊂ Ω of a node rFE,i
of the FE model:

zm(ri,FE) =
1

N (ri,FE)

∫
N (ri,FE)

zm(rDIC)dr i = 1, ..., d (6)

As such, a measured response zmj is obtained for each node i in Ω, located at ri,FE. The
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notation zm(ri,FE) is used instead of the vector notation, in order to explicitly denote
the correspondence of all measurement points that are contained in each replica zm with
a location in the model domain Ω. In case element responses (strains) are used for the
comparison, the reduction of the measurement data set is straightforward, asN (rFE) ⊂ Ω
is considered to be coinciding with the elements of the FE discretization. On the other
hand, when nodal response (displacements) values are used for the identification, N (rFE)
is constructed based on a mesh that connects the midpoints of the elements.

Step 2: The effective dimension of the experimental data set z̃e is determined, based
on the idea that the combination of d system responses not necessarily represents a d-
dimensional manifold in Rd, e.g. due to a high degree of dependence between certain
responses. dr is specifically determined using a singular value decomposition over the
covariance matrix Ξe of z̃e:

Ξe = ΦeΛe(Φe)T (7)

with Λ ∈ Rd×d the diagonal matrix of the ordered eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λd of
Ξ, and Φ ∈ Rd×d a matrix containing the orthogonal eigenvectors φej ∈ Rd, j = 1, ..., d.
Finally, the effective dimensionality dr of the convex hull of the measurement data set Ce
is then defined such that:

dr∑
i=1

λei
tr(Ξe)

≥ 1− ε (8)

with tr(Ξe) the trace of the covariance matrix, and ε the approximation error, which
should be a very small number. A thorough explanation is given in [5]. Figure 4 illustrates
the convergence of ε with respect to dr, when applied to experimental data sets containing
25 up to 1000 samples [5].

Figure 4: Convergence of ε with respect to dr, when applied to experimental data sets
containing 25 up to 1000 samples

Step 3: The correct number of base functions nb corresponds with an uncertain realisa-
tion set z̃m which has at least the same effective dimension as z̃e. Increasing nb in eq. (1)
increases the dimension of the hyper-cubic input space αI . Furthermore, since more basis
functions are defined, also the complexity of the coupling between local interval scalars
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at each Ωe. As such, nb directly impacts dr of z̃m. In case of a strictly monotonic model
g(), nb can be chosen to be equal to dr. For non-monotonic models nb should be selected
in an iterative approach [5].

Step 4: The initial guess on the parameters is mainly needed when gradient-based opti-
mization algorithms such as Matlab’s fmincon are used. Even in that case, it was shown
in [6] that the obtained results are not sensitive to the initial estimate. When global
optimisers are applied, this initial estimate is not used in the quantification procedure.
In that case, rather the bounds between which the analyst believes that these parameters
lie can be provided to speed up the algorithm.

Step 5: Two possible reduction schemes were presented recently by the authors since the
computation of Cm and Ce scales exponentially with the number of considered responses.
The first method, called the subset selection scheme [3, 6, 9] selects a subset of responses
from the full uncertain realisation set containing the most informative responses, and as
such retains the physical interpretation of the reduced convex hulls. As a drawback, this
method requires forward solves of the interval field FE model. Alternatively, also the
subspace projection method [5, 10, 11] was introduced. Instead of selecting an optimal
subset of responses, the full uncertain realisation set and measurement data set are pro-
jected onto a lower dimensional basis, constructed via a singular value decomposition of
the covariance matrix of the measurement data set. This method is completely objective
with respect to the data and requires no forward FE solves. As a drawback, the method
is rather sensitive to spurious data in the measurement data set, as the complete data set
is considered. Therefore, appropriate data pre-processing is pre-emptive. Both methods
will be explained in detail in the following:

Step 5a: The subset selection reduction scheme is originally presented in [6] and applied
also in [9], and is based on the idea that a limited subset of the total response
vector contains sufficient information to steer the quantification procedure. The
performance of the method is also verified in [6, 9, 18]. Consider the index set L,
where each index l corresponds to a a combination of dr responses out of the result
vector zmi , then following optimization problem determines the optimal subset:

l∗ = argmax
l∈L

 k∑
i=1

∣∣∣∣∣∣∂V
r
m,l

∂rαi
· rαi
Vm
· 1∑

l

∂V rm,l
∂rαi
· rαi
Vm

∣∣∣∣∣∣ · min(Λr
c)

max(Λr
c)

 (9)

where l∗ denotes the index number of the optimal subset V r
m,l is the multidimensional

volume of the candidate reduced uncertain realisation set, rαi is the radius of one of
the k locally defined interval scalars and Vm is the volume of the uncertain realisation
set. Λr

c ∈ Rdr×dr represents the diagonal matrix containing the ordered dr eigenval-
ues, as obtained by performing a singular value decomposition of the covariance
matrix Ξr

c ∈ Rdr×dr of the candidate uncertain realisation set z̃m,rl . Technically, the
optimization problem can be solved by brute forcing the solution when the number
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of responses is comparably low [6], or by using integer-valued genetic algorithms for
larger FE models [9]. Both approaches were shown to be viable.

Step 5b: The subspace projection reduction scheme is originally presented in [5] and
extended in [10,11]. Specifically, both z̃m and z̃e are projected onto a basis B ∈ Rdr

before computing the convex hulls, which is defined as:

B = span
(
φed−dr ,φ

e
d−dr+1, ...φ

e
d

)
(10)

with dr the effective dimension of z̃e [5] and φm are those eigenvectors in Φm that
correspond to the dr largest eigenvalues in Λm, and stem from the singular value de-
composition presented in eq. (7). If dr would be still too large to allow for computing
Ce and Cm, z̃m,r and z̃e,r are further projected onto d+

r -dimensional subspaces, de-
fined by a lower-dimensional orthogonal basis B+

i ⊂ B, i = 1, . . . ,
(
dr
d+r

)
, constructed

as a subset of B, with d+
r << dr and

(
dr
d+r

)
the binomial coefficient [8,11]. Specifically,

the ith orthogonal subspace basis B+
i is defined as:

B+
i = {φm,Ii(1),φmIi(2), . . .φm,Ii(d+r )} (11)

with Ii an index set containing the d+
r indices for the ith, i = 1, ...,

(
dr
d+r

)
subspaces

of the vector space by B. The convex hulls are then computed in each B+
i . This

projection on sub-bases however comes at the cost of losing higher-order interaction
between model responses. In the case of the AIRMOD test structure [19], a speed-up
of the objective function evaluation with a factor 1005 was obtained [20] following this
approach, while maintaining an accurate quantification of the uncertain parameters.

Note that where 5a is performed using the computed model responses, the reduction in
5b is solely based on the available measurement data.

Step 6a: For computational efficiency, Ce and its derivative quantities are computed prior
to steps 7: and 8:, and passed to the optimization solvers where needed. The equations
needed to perform these computations are given in the relevant step. Note that this
computations are performed using the reduced experimental data set.

Step 6b: The computation of the convex hull of the realisation set and its derivative
quantities are needed in each iteration of Step 7 and Step 8.

Step 7: The base functions ψi(r) that model the spatial nature of θI(r) that is being
quantified, are determined by minimising a squared L2 norm over the difference between
the gradients of the half spaces that bound Ce and Cm. Formally, the objective function
is defined as:

δBV =
∥∥∥∇fm (αI ,ψj(r)

) ∣∣
αI=αI0

−∇f e
∥∥∥2

2
(12)

where fm is defined by considering only the crisp boundary of Cm and stems directly from
following set of linear inequalities:

fm
(
αI ,ψ (r)

)
= [fm1 , f

m
2 , ..., f

m
hm ]T = Amz

T − bm = 0 (13)
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with ∀fi, i = 1, ..., hs : Rdr 7→ 0. These functions are analogously defined for the measure-
ment data set. The rationale behind this objective function is presented in [5] and also
applied in [10], where it is shown that these gradients in fact contain information on the
dependence between the intervals that are defined at each element of the FE model. This
dependence stems directly from the base functions, as these interpolate the nb globally
defined interval scalars αIi towards intervals at each of the k elements in Ω. As such, ∇f e
contains information on the local dependence of the uncertainty at the element level of the
FE model, and hence, the correct basis functions. Furthermore, when ψj(r) is defined
using inverse distance weighting interpolation [6], the optimization problem reduces to
finding the correct control points [5]. Note that for each step in the iterative solution of
this minimisation, subroutine 6b : should be performed to compute Cm and ∇fm.

Step 8: As a final step, the interval scalars are also quantified via an optimization ap-
proach. The objective δ(αI) describes the discrepancy in volume between z̃m and z̃e, and
is defined as:

δ(αI) =
(
∆V 2

e + ∆V 2
o + ∆c2

)
(14)

with:

∆Ve = 1− Vm(αI)

Ve
(15a)

∆Vo = 1− Vo(α
I)

Ve
(15b)

∆c =
∥∥ce − cm(αI)

∥∥
2

(15c)

with ce and cm the geometrical centres of mass of respectively z̃e and z̃m. Vo is the
multidimensional volume of the overlap z̃o between z̃e and z̃m, which is computed as the
intersection between these two sets:

z̃o(α
I
j ) = Cm(αIj ) ∩ Ce (16)

In practice, z̃o(α
I
j ) can be determined as:

z̃o =
{
zj | Aoz

T
j − bTo ≤ 0 ∧ zj ∈ Rd

}
(17)

with Ao ∈ R(hm+hs)×d:
Ao = [Am;Ae]

T (18)

and bo ∈ R(hm+he):
bo = [bm; be]

T (19)

with Am ∈ Rhm×d, As ∈ Rhs×d, bs ∈ Rhs and bm ∈ Rhm .

This optimization problem can be solved using gradient-based optimisers when a suffi-
ciently accurate initial estimate is possible [6]. Otherwise, also global algorithms such as
Particle Swarm Optimisation were shown to provide accurate results [11, 20]
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Final result: The result of the quantification of the interval field on the case study is
illustrated in figure 5. Based on the numerically generated measurement data, nb, ψ(r)
and αI were quantified according to the algorithms illustrated in figure 1 and the steps
listed above. As can be seen, the method is capable of reconstructing the interval field
that was used for the generation of the measurement data completely (denoted ”θI(r)
measurement”). For a more thorough study of the performance of the methods using
this case study, as well as more challenging examples, the reader is referred to [5, 6, 11].
In the referred papers, it is shown that for this specific case, both the subset selection
as the subspace projection reduction schemes enable an accurate quantification of the
uncertainty.

Figure 5: Illustration of the interval field quantification procedure

4 CONCLUSIONS

The quantification of spatial uncertainty of parameters that are not directly measurable
is a challenging task, especially when only limited data are available. Recently, the authors
presented an approach to tackle this problem using a combination of interval fields and
set-theoretical approaches. This paper gives an overview of these developments, and is
aimed at aiding the implementation of these new methods. A small scale example is
used to illustrate several steps of the new method, and shows that a highly accurate
quantification of the spatial uncertainty is possible. Future work will be focussed on
expanding the scope of this method towards more generalised models of uncertainty such
as imprecise probabilities, as well as applying these methods in case studies such as
composite structures or additive manufacturing.
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