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Abstract. Structural health monitoring for aircraft structures has gradually turned from 
fundamental research to practical implementations. However, numerous uncertainties arise 
from practical engineering such as time-varying loads and boundary conditions may have 
great effects on sensor signals, which make it difficult for reliable evaluation of structural 
damages. To deal with these uncertainties, probabilistic data mining methods are attracting 
more and more attention and gradually applied to aircraft structural health monitoring. 
Probabilistic data mining methods quantify effects of these uncertainties and the damage with 
probabilistic models, and perform reliable damage evaluation with diagnosis method. This 
paper aims at discussing probabilistic data mining methods in aircraft structural health 
monitoring, as well as their applications to aircraft structures in practical engineering taking 
advantages of guided wave based structural health monitoring.  

 
 
1 INTRODUCTION 

Structural Health Monitoring (SHM) [1] is a key technology used to address the safety and 
maintenance problems in aircraft engineering. Due to the worldwide attention and advances in 
maturing SHM technology for aerospace structures in the past two decades, this technology 
has gradually turned from fundamental research to practical implementations. However, 
aircraft structures in practical engineering suffer from time-varying conditions such as 
environment factors, loading, and boundary conditions. These conditions are usually random, 
which introduce numerous uncertainties to signals acquired from SHM sensors and make it 
difficult to implement reliable diagnosis of structural damages. 

Aiming at reducing influences of these conditions, methods such as environmental 
parameter compensation and baseline signal dependency reduction [2] are developed. For 
example, the temperature compensation method is proposed to reduce effects of the 
temperature on SHM signals with the on-line monitored temperature. However, these 
methods have their own limitations, since real aircraft structures are complicated and effects 
of time-varying conditions on SHM signals are strong coupling. On the other hand, 
probabilistic data mining methods are being paid more and more attention to deal with these 
uncertainties. This kind of methods quantify uncertainties with probabilistic models, based on 
which reliable damage evaluation is performed. Different kinds of probabilistic data mining 
methods are developed for damage diagnosis under time-varying conditions, such as the 
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Gaussian mixture model (GMM) [3] and particle filtering (PF) [4].  
GMM is a promising data-driven statistical model that can be used to describe complicated 

and unknown probability distributions, which is especially suitable to model uncertainties 
introduced by complicated time-varying conditions. In the GMM based damage diagnosis, the 
GMM is used to model the distribution of SHM signal features sequentially. Then the 
migration of the GMM relative to the baseline GMM is used for reliable damage evaluation. 
Besides, the PF is a Bayesian filtering method aiming at solving non-linear and non-Gaussian 
problems, which introduces the prior knowledge of a damage evolution model in damage 
diagnosis. The posterior estimation of the damage state is evaluated through Bayesian 
methods. These two probabilistic data mining methods have been studied preliminarily for 
damage diagnosis under time-varying conditions. Tschope et al. [5] reported the validation of 
using GMM to classify the damage degree in a plate-like structure. Banerjee et al. [6] used 
GMM as a classification modeling technique to estimate and quantify the progressive damage 
with the guided wave based SHM. Corbetta et al. [7] adopted the PF for diagnosis and 
prognosis of the fatigue crack damage under random loading. Rangaraj et al. [8] incorporated a 
PF algorithm for crack identification in beams from vibration measurements. However, deep 
research needs to be further addressed for more complex structures and real service conditions. 

This paper discuss the two probabilistic data mining based methods, the GMM and PF, for 
damage diagnosis under time-varying conditions, taking advantages of the guided wave based 
SHM. Evaluation of these two methods is carried out on real complicated aircraft structures. 
The rest of the paper is organized as follows: Section 2 gives a brief discussion about the two 
probabilistic data mining methods. Section 3 introduces experimental validations of these 
methods. Section 4 gives conclusion and discussion. 

2 PROBABILISTIC DATA MINING METHODS FOR SHM 

Structural health monitoring (SHM) is an emerging technology which combines advanced 
sensors and algorithms to interrogate the state of the structure in real-time or whenever 
necessary. The basic ideal of SHM is to arrange sensors on the target structure, such as 
accelerometers, fibre optics, and piezoelectric transducers. With these sensors that are 
permanently attached to the structure, signals can be acquired at any time. By extracting 
signal features from SHM signals, the structural damage is identified and evaluated through 
advanced diagnosis technologies. Fig. 1 illustrates the typical SHM process. 

It should be noted that not only the damage but also environment, loading, and boundary 
conditions may cause changes to the SHM signal. Therefore, probabilistic data mining 
methods are developed to deal with this problem. The following discuss the basics of two 
probabilistic data mining methods, the GMM and PF. 
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Figure 1:  Typical process of SHM [9] 

2.1 Gaussian mixture model 

Denoting a signal acquired from SHM sensors as s , signal features extracted from this 
signal are expressed as an vector 1 2=[ , ,..., ]nz z zz , where 1 2, ,..., nz z z  are n different features. 
Initially, a number of baseline signals are collected when the structure is in the healthy state 
under service conditions. Features of these signals are extracted as 1 2{ , ,..., }Kz z z , where K is 
the number signals. The uncertainty distribution of these signal features can be considered as 
a mixture effect of the time-varying conditions, which is assumed to be statistically 
distributed. The GMM is adopted to model this probabilistic distribution of these signal 
features. 

GMM is a probability distribution that is constructed by a weighted sum of a finite number 
of Gaussian components, as expressed in Eq. (1).  
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where rμ  and rΣ  are the mean and the covariance matrix of the rth Gaussian components. 

A GMM is parameterized by the probability distribution parameters 
1 1 1=( ,..., , ,..., , ,..., )C C C θ μ μ Σ Σ . In the GMM theory, unsupervised learning is adopted to obtain 

these parameters. Given the signal feature set Z , the EM algorithm [3] is performed 
iteratively to maximum the likelihood function shown in Eq. (3), which gives the optimal 
parameter vector optθ .  
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At the initial time, signal features 1 2=[ , ,..., ]Kz z zZ  extracted from baseline signals are used 
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to train the GMM model, which is called as the baseline GMM. Then, SHM signals are 
acquired on-line successively. Once a new SHM signal is obtained, the set of signal features 
Z  is updated as updateZ . Based on the new dataset updateZ , the GMM model is retrained, which is 
called the called as the monitoring GMM. Since the influence introduced by time-varying 
conditions is random while the influence of damage is inherent and progressive 
accompanying with damage propagation, the difference between the monitoring GMM and 
the baseline GMM represents the damage evaluation. The probability distribution difference 
measurement such as the Kullback–Leibler (KL) distance can be used to quantify the 
migration difference, which give rise to the damage evaluation of the structural damage.  

2.2 Particle filter 

Different from the GMM, the PF introduces the prior knowledge of a damage evolution 
model in damage diagnosis. A state space model is adopted to represent damage evolution and 
the SHM monitoring process explicitly, in which the uncertainties introduced by time-varying 
conditions are modelled as random variables. The state space model composes of a state 
equation as shown in Eq. (1) and a measurement equation as shown in Eq. (2). 

 1 1 1( , , )k k k k kf   x x θ ω   (4)  

 ( , )k k k kgz x v   (5) 

where k is the discrete time index, kx  is state vector at time k, ( )kf  is a nonlinear function 
representing damage evolution from time 1k   to time k, 1kω  is a random variable modelling 
uncertainties of damage evolution. kz is the feature vector extracted from the SHM signal, 

( )kg   is the mapping between kz  and the damage state kx , kv  is the measurement noise 
modelling uncertainties during the SHM process.  

The basic idea of the PF is to evaluate the posterior probability density (pdf) of the damage 
state 1:( | )k kp x z  with the Bayesian filtering framework. 
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where 1 1: 1( )k kp  x z  is the posterior pdf at time k-1. 1: 1( )k kp z z  is a normalization constant, 
( )k kp z x is the likelihood function.  
However, these two equation do not have analytic solutions in most cases. The PF 

approximates the posterior pdf by means of sN  samples called ‘particles’ using the 
importance sampling strategy  
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where   is the Dirac delta function. ( )i
kx  represents the ith particle, sN  is the number of 

particles,   is the Dirac delta function expressed as Equation (6). These particles are sampled 
from an importance density function 1:( | )k kq x z . A usually used importance density is the 
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transition pdf 1: 1( | )= ( )k k k kq p x z x x , which gives the weight updating equation as Eq. (9).  

 ( ) ( ) ( )
1 ( )i i i

k k k kw w p z x   (9) 

The posterior estimation of the state is evaluated as Eq. (6).  
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One of the main problems of this PF is the degeneracy phenomenon. After a few iterations, 
all but one particle will have negligible weight. To deal with this problem, a resampling 
procedure is performed, which eliminates particles with small weights, copying which have 
large weights, and setting all the weights to 1/ sN .  

2.3 Experimental Validation 

Experiments using the active guided wave based SHM is are performed to validate these 
probabilistic data mining methods. Figure 2 illustrates the principle of the active guided wave 
based SHM. The guided wave is a kind of elastic waves that propagate in wave-guide 
structures, which can be excited and sensed with the piezoelectric transducers (PZTs). 
Changes of the guided wave may be caused by the structural damage, based on which damage 
can be evaluated with diagnosis algorithms.  
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Figure 2: Illustration of the active guided wave based SHM 

3.1 Evaluation of the GMM based damage diagnosis 

Fig. 3 shows the full-scale aircraft fatigue test, which is performed on an aircraft that have 
accumulated thousands of flight hours. A fatigue crack is found at the right landing gear spar. 
Two PZTs are arranged on the surface of the structure to excite and acquire guided wave 
signals with the SHM system developed by the authors [11, 12]. During the fatigue test, 
scheduled inspection is carried out with an endoscope.  

As illustrated in Fig. 4, the signal features that are also called as damage index (DI) are 
extracted from the monitored guided wave signal. Two damage indices are involved: the time-
domain cross-correlation damage index ( 1DI ) and the Spectrum magnitude difference damage 
index ( 2DI ). It is obvious that the damage indices are strongly affected by the loading and 
environmental conditions. It is difficult for damage evaluation by directly using these damage 
indices.  
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Figure 3: Experimental setup of the full-scale fatigue test 

 
Figure 4: Signal features extracted from guided wave signal 

Fig. 5 shows the GMM constructed with the guided wave damage index 1 2[ , ]DI DIz . 
Once a new guided wave signal is acquired, the GMM is updated. Fig. 5a illustrates the 
migration of the GMMs. To evaluate the damage, the KL distance is calculated as shown in 
Fig. 5b. Comparting with the damage indices, the KL distance increases cumulatively and 
stably with the crack growth. In addition, the early crack growth can be identified with the KL 
distance.  
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(a) Illustration of the migration of GMMs 

 
(b) KL distance of the GMMs 

Figure 5: Illustration of the GMM based damage evaluation 

3.2 Validation of the PF based damage diagnosis 

Fig. 6 shows the fatigue test of the real aircraft attachment lug, which is a kind of 
important joint type of aircraft structures. This lug is made of 5 mm thick aircraft aluminium. 
A steel fixture is used to be assembled with this lug for transfering the stretch load. During the 
fatigue test, the sinusoid load with maximum load 18kN and load ratio 0.1 is applied. PZTs 
are arranged on the surface of the structure to excite and acquire guided wave signals with the 
SHM system developed by the authors [11, 12] 

 
 

Figure 6: Illustration of the GMM based damage evaluation 
As shown in Fig. 7a, experimental crack lengths are recored versus loading cycles. The 

fatigue crack propagation trajectories of the identity specimens represent obvious dispersion, 
which is caused by uncertainties arising from the intrinsic material property, specimen 
machining and the complexity of load transmission. Fig.7b illustrates the normalization 
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correlation moment damage index extracted from guided wave signals. It can also be found 
that uncertainties introduce difficulties to the evaluation of the crack length with the guided 
wave SHM.  

 
(a) Crack growth results                             (b) Damage index 

Figure 7: Experimental results 
In the validation, specimen T7 is deemed as the target structure to be diagnosed. The state 

space model of the attchment lug is established based on the Paris model and the data from 
T2-T7, which is shown in Eq. (11) and (12) 

 4.46
1 1exp( ) ) 0( 5k k kx x C K       (11) 

 -5 3 -3 2 -2
0 0 05.491 10 ( ) 1.521 10 ( ) 5.120 10 ( )k k k k kz x x x x x x v            (12) 

where kx  is the crack length, kz  is the guided wave damage index. The random variable   
follows the Gaussian distribution 2 2( / 2, )N    , where =1.2 . and the measurement noise 

kv  follows zero-mean Gaussian distribution 2(0, 0.028 )N .  
Once a new guided wave signal is obtained during on-line monitoring, the PF integrated 

the damage index extracted from guided wave signals to evluated the posterior estiamtion of 
the crack length. Fig. 8 shows the posterior estimation of the PF based method, which shows 
the effectiveness of the PF based damage diagnosis.  

 
Figure 8: Posterior estimation of the crack length with the PF based method 

4 CONCLUSIONS 

This paper discusses applications of the probabilistic data mining based methods, the 
GMM and the PF, on damage diagnosis under time-varying conditions. Fatigue tests of real 
aircraft structures are carried out to validate these methods, in which the active guided wave 
based SHM is employed. The validation result shows the effectiveness of these probabilistic 
data mining methods.  
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