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Abstract. The wave finite element method (WFE) for the vibration of waveguides and
periodic structures bases on the decomposition of vectors of degree of freedom (DOF)
into left and right waves. This technique permits to reduce all DOF inside the periodic
structure. However, this method cannot be applied easily if the periodic structure is
subjected to complex or density loads. This article presents an extended WFE for any type
of loads. Firstly, the dynamic equation is rewritten to separate the vectors of loads and
DOF. Then, by using the same wave base as for the free-loaded structure, we can obtain
a decomposition of DOF with a new component which corresponds to the loads. Finally,
this decomposition is applied to the classical approaches of WFE. For the dynamic stiffness
matrix (DSM approach), it is shown that the external loads have no contribution to the
global matrix but they lead to an equivalent load in the dynamic equation. Otherwise,
the wave analysis (WA approach) is represented by a new component which is the wave
amplitudes of the loads. Some computations on simple structures show the efficiency of
the method.

1 BASIC FRAMEWORK

The wave finite element method has been developed to calculate the dynamic behavior
of periodic structures and waveguides [1]. Recently, this technique has been used as a
reduced model for a complex structure [2, 3]. However, this method can not be applied
easily for periodic structures subjected to external loads and this is objective of this
article.

We consider a periodic structure which contains N substructures as shown in Figure
1. By using the finite element method, the dynamic equation of a substructure can be
written in matrix form D̃q = F with D̃ = K + jωC − ω2M is the dynamic stiffness
matrix, and q, F are the vectors of degrees of freedom and nodal loads. Then, we can
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Figure 1: Structure with a periodic substructure

rewrite the dynamic equation to separate the boundaries and inner DOF as follows D̃II D̃IL D̃IR

D̃LI D̃LL D̃LR

D̃RI D̃RL D̃RR

 qI

qL

qR

 =

 FI

FL

FR

 (1)

where L,R and I denote for the left, right boundaries and inner nodes of the substructure.
Then, we can reduce the inner nodes qI by rewriting the first row of equation (1) as follows

qI = D̃
−1
II

[
FI − D̃IL qL − D̃IR qR

]
(2)

Then, by substituting the aforementioned equation into the second and the third rows of
equation (1) , we obtain

D̃LID̃
−1
II

[
FI − D̃IL qL − D̃IR qR

]
+ D̃LL qL + D̃LR qR = FL

D̃RID̃
−1
II

[
FI − D̃IL qL − D̃IR qR

]
+ D̃RL qL + D̃RR qR = FR

(3)

In the other way, we can rewrite[
DLIFI

DRIFI

]
+

[
DLL DLR

DRL DRR

] [
qL

qR

]
=

[
FL

FR

]
(4)

where
DLL = D̃LL − D̃LID̃

−1
II D̃IL DLR = D̃LR − D̃LID̃

−1
II D̃IR

DRL = D̃RL − D̃RID̃
−1
II D̃IL DRR = D̃RR − D̃RID̃

−1
II D̃IR

DLI = D̃LID̃
−1
II DRI = D̃RID̃

−1
II

(5)

We see that equation (4) presents a relation between the DOF and nodal loads and at the
left and right boundaries of a substructure, it contains a term of FI which is zero when
the substructure is free-loaded. When the structure is periodic, this equation holds for all
substructure. For the two consecutive connected substructures (n) and (n+ 1), we have

q
(n)
R = q

(n+1)
L

F
(n)
R + F

(n+1)
L = F

(n)
B

(6)
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where F
(n)
B is the external nodal load at the right boundary R of the cell (n). By combining

equations (5) and (6), we obtain[
q
(n+1)
L

−F
(n+1)
L

]
=

[
DqIF

(n)
I

DfIF
(n)
I − F

(n)
B

]
+ S

[
q
(n)
L

−F
(n)
L

]
(7)

where

S =

[
−D−1LRDLL −D−1LR

DRL −DRRD−1LRDLL −DRRD−1LR

]
,

[
DqI

DfI

]
=

[
−D−1LRDLI

DRI −DRRD−1LRDLI

]
(8)

We can rewrite equation (7) as follows

u(n+1) = Su(n) + b(n) (9)

where

u(n) =

[
q
(n)
L

−F
(n)
L

]
, b(n) =

[
DqIF

(n)
I

DfIF
(n)
I − F

(n)
B

]
(10)

Equation (9) presents a relation between the substructure (n) and its next substructure
(n + 1). Here b(n) presents the external loads on the substructures (n) (when the sub-
structure is free, b(n) = 0). Equation (9) presents also a relation of a geometric series with
regard to (n). Therefore, for a structure including a series of N periodic substructures,
we have

u(n) = Sn−1u(1) +
n−1∑
k=1

Sn−k−1b(k) (11)

u(N+1) = SN−n+1u(n) +
N∑

k=n

SN−kb(k) (12)

The aforementioned equations are the relation between the substructure (n) and the first
and the last substructures. Next, we will develop these expressions with a wave base
decomposition.

Remark: F
(n)
B in equation (6) is the external nodal load at the right boundary of the

substructure. Therefore, this load is considered applying in the right end of the periodic
structure but it is not included on the left end. This will explain the different expressions
for the left and right boundary in the DSM and WA approches presented in section 3.

2 WAVE DECOMPOSITION

We are looking for wavemodes {(µj, φj)}j which are the eigenvalues and eigenvectors
of the matrix S such that

Sφj = µjφj (13)
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Due to the symplectic nature of the matrix S [4], we consider the eigenproblem of the
transformation S + S−1 which yields eigenvalues of the form λj = µj + 1/µj given by[(

N′JL′
T

+ L′JN′
T
)
− λjL′JL′

T
]

zj = 0 (14)

where

L′ =

[
0 In

DLR 0

]
, N′ =

[
DRL 0

−(DLL + DRR) −In

]
, J =

[
0 In
−In 0

]
(15)

Then, each pair of eigenvalues (µj, µ
?
j) can be computed analytically by

x2 − λjx+ 1 = 0 (16)

Also, the eigenvectors corresponding to these eigenvalues are computed by the closed-form
expressions

φj =

[
In 0

DRR In

]
w′j, φ?

j =

[
In 0

DRR In

]
w′

?
j (17)

where w′j = J(L′T − µ?
jN
′T )zj and w′?j = J(L′T − µjN

′T )zj.
If we note Φ = [φ1 · · ·φn] and Φ? = [φ?

1 · · ·φ?
n], we have a wave base {Φ,Φ?} of the

transformation S. We can also separate the components of the wave base corresponding
to q and F as follows

Φ =

[
Φq

ΦF

]
Φ? =

[
Φ?

q

Φ?
F

]
(18)

We can decompose each vector of equation (9) in this wave base as follows

u(n) = ΦQ(n) + Φ?Q?(n)

b(n) = ΦQ
(n)
B + Φ?Q

?(n)
B

(19)

Then, by replacing the aforementioned equation into equations (11) and (12), we obtain

Q(n) = µµµn−1Q +
n−1∑
k=1

µµµn−k−1Q
(k)
B

Q?(n) = µµµN+1−nQ? −
N∑

k=n

µµµk+1−nQ
?(k)
B

(20)

We see that the DOF of a substructure are represented by the two wave amplitudes
Q(n) and Q?(n). These amplitudes depend on the wave amplitudes of the first and the last
substructures (Q and Q?) and the wave amplitudes of the external loads on the middle

substructures Q
(k)
B and Q

?(k)
B , which are calculated from equation (19).

Q
(n)
B = Φ?TJb(n), Q

?(n)
B = ΦTJb(n) (21)

4



T. Hoang, D. Duhamel and G. Foret

By substituting equation (10) into the aforementioned equation, we obtain

Φ?TJb(n) =
(
ΦΦΦ?T

q DfI −ΦΦΦ?T
F DqI

)
F

(k)
I −ΦΦΦ?T

q F
(k)
B

ΦTJb(n) =
(
ΦΦΦT

q DfI −ΦΦΦT
FDqI

)
F

(k)
I −ΦΦΦT

q F
(k)
B

(22)

In addition, we have the relation between the components of the wave base as follows (see
[3])

ΦΦΦF = DRRΦΦΦq + DRLΦΦΦqµµµ
? = − (DLLΦΦΦq + DLRΦΦΦqµµµ)

ΦΦΦ?
F = DRRΦΦΦ?

q + DRLΦΦΦ?
qµµµ = −

(
DLLΦΦΦ?

q + DLRΦΦΦ?
qµµµ

?
) (23)

By substituting equations (8) and (23) into equation (22), we obtain

Q
(k)
B =

(
µµµΦΦΦ?T

q DLI + ΦΦΦ?T
q DRI

)
F

(k)
I −ΦΦΦ?T

q F
(k)
B

Q
?(k)
B =

(
µµµ?ΦΦΦT

q DLI + ΦΦΦT
q DRI

)
F

(k)
I −ΦΦΦT

q F
(k)
B

(24)

Remark: In general, the wave base is not normalized automatically after computing
the eigenproblem in equation (14). The ill-conditioned matrix S can influence the or-
thogonality of the wave base. We can resolve this problem by considering the weighting
matrix as follows

Ψ = Φ?TJΦ = Φ?T
q ΦF −Φ?T

F Φq

Ψ? = ΦTJΦ? = ΦT
q Φ?

F −ΦT
FΦ?

q

(25)

It is important to remark that
Ψ? = −ΨT (26)

Using this weighting matrix leads to modify the wave amplitude of the external loads as
follows:

ΨQ
(n)
B = Φ?TJb(n), Ψ?Q

?(n)
B = ΦTJb(n) (27)

3 ANALYSIS OF A COMPLETE STRUCTURE

3.1 DSM approach

The DSM approach is to establish the link between the DOFs and nodal loads of the
left and right ends of the periodic structure which are components of u(1) and u(N+1). For
the first and the last substructure, we obtain the following results from equations (19)
and (20)

u(1) = ΦQ + Φ?µµµNQ? −Φ?

N∑
k=1

µµµkQ
?(k)
B

u(N+1) = ΦµµµNQ + Φ?Q? + Φ
N∑
k=1

µµµN−kQ
(k)
B

(28)

The aforementioned equation can lead to the following result (see Appendix A)[
F

(1)
L

F
(N+1)
R

]
= DT

[
q
(1)
L

q
(N+1)
R

]
+ FT (29)
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where DT ,FT are the equivalent dynamic stiffness matrix and the external loads applied
on the structure which are calculated by

DT =

[
DLL 0

0 DRR

]
+

[
ΦΦΦ?−T

q µµµNΦΦΦ?T
q I

I ΦΦΦ−Tq µµµNΦΦΦT
q

]−1
×[

ΦΦΦ?−T
q µµµN−1ΦΦΦ?T

q ΦΦΦ?−T
q µµµΦΦΦ?T

q

ΦΦΦ−Tq µµµΦΦΦT
q ΦΦΦ−Tq µµµN−1ΦΦΦT

q

] [
DLR 0

0 DRL

] (30)

with [·]−T denotes for the inverse of the transpose matrix, and

FT =

[
ΦΦΦ?−T

q µµµNΦΦΦ?T
q I

I ΦΦΦ−Tq µµµNΦΦΦT
q

]−1
×

N∑
k=1

[
ΦΦΦ?−T

q µµµN−k−1ΦΦΦ?T
q ΦΦΦ?−T

q µµµN−kΦΦΦ?T
q

ΦΦΦ−Tq µµµk+1ΦΦΦT
q ΦΦΦ−Tq µµµkΦΦΦT

q

][
DLIF

(k)
I

DRIF
(k)
I + F

(k)
B

] (31)

Equation (29) presents the relation between the DOF and the loads of the periodic

structure. When FT = 0 (which is deduced by F
(k)
I = F

(k)
B = 0), we obtain the same

relation for the free loaded structure which has been studied in different publications [2].
We can combine this relation with the DSM of the rest of the structure to get the reduced
DSM of the whole structure.

3.2 WA approach

The aim of the WA approach is to calculate the response via the wave amplitudes
{Q,Q?} by using the boundary conditions at the left and right ends of the structures.
By combining equation (19) and (20), we obtain

q(n) = Φqµµµ
n−1Q + Φ?

qµµµ
N+1−nQ? + Φq

n−1∑
k=1

µµµn−k−1Q
(k)
B −Φ?

q

N∑
k=n

µµµk+1−nQ
?(k)
B

±F(n) = ΦFµµµ
n−1Q + Φ?

Fµµµ
N+1−nQ? + ΦF

n−1∑
k=1

µµµn−k−1Q
(k)
B −Φ?

F

N∑
k=n

µµµk+1−nQ
?(k)
B

(32)

From the dynamic stiffness matrix of the substructures at the left and right ends of the
periodic structure, we can write

−F
(1)
L = Dq

(1)
L + Dqq0 + DFF0 − F

(0)
B

(33)

where D,Dq,DF are calculated from the dynamic equation of the first substructure (see

[3]) and F
(0)
B is the external load on the left end of the periodic structure. By using the

wave decomposition in equation (32), we obtain

q(1) = ΦqQ + Φ?
qµµµ

NQ? −
N∑
k=1

Φ?
qµµµ

kQ
?(k)
B

−F
(1)
L = ΦFQ + Φ?

Fµµµ
NQ? −

N∑
k=1

Φ?
Fµµµ

kQ
?(k)
B

(34)
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Then, by substituting the aforementioned equations into equation (33), we have

(ΦF − DΦq) Q =
(
DΦ?

q −Φ?
F

)(
µµµNQ? −

N∑
k=1

Φ?
qµµµ

kQ
?(k)
B

)
+ Dqq0 + DFF0 (35)

with Q
(k)
B ,Q

?(k)
B are calculated by equation (24). In the similar way, for the ending sub-

structure, we get
−F

(N+1)
R = D?q

(N+1)
R + D?

qq
?
0 + D?

FF?
0 (36)

where D?,D?
q,D?

F are calculated from the dynamic equation of the last substructure. Then,
we obtain the similar result

(ΦF − DΦq) Q =
(
DΦ?

q −Φ?
F

)(
µµµNQ? −

N∑
k=1

Φ?
qµµµ

kQ
?(k)
B

)
+ Dqq0 + DFF0 (37)

By combining equations (35) and (37), we obtain

Q = C

[
µµµNQ? −

N∑
k=1

µµµkQ
?(k)
B

]
+ F, (38)

Q? = C?

[
µµµNQ +

N∑
k=1

µµµN−kQ
(k)
B

]
+ F? (39)

where

C = − [DΦq −ΦF ]−1
[
DΦ?

q −Φ?
F

]
, C? = −

[
D?Φ?

q + Φ?
F

]−1
[D?Φq + ΦF ] ,

F = − [DΦq −ΦF ]−1 [Dqq0 + DFF0] , F? = − [D?Φq + ΦF ]−1
[
D?

qq
?
0 + D?

FF?
0

]
By combining equations (38) and (39), we obtain

AQ = F (40)

where Q =
[
QT Q?T

]T
and

A =

[
In −CµµµN

−C?µµµN In

]
, F =

[
F− C

∑N
k=1µµµ

kQ
?(k)
B

F? + C?
∑N

k=1µµµ
N−kQ

(k)
B

]
(41)

Equation (40) permits to calculate the wave amplitudes {Q,Q?} and then the response
is calculated by equation (32).

4 EXAMPLES

Let’s consider a beam of width a = 0.1m, thickness of b = 0.01m and length L = 2m.
The material parameter is given by the Young modulus of 30GPa and the mass density of
2200kg/m3. The beam is fixed at the left boundary and it is subjected to a pressure p in

7
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Figure 2: Fixed-free beam subjected to dynamic loads

an interval between 0.3 and 0.4m as shown in Figure 2. In this structure, the boundary
condition is the following

q(1) = 0, F(N+1) = 0 (42)

We can use the DMS or WA approaches presented in section 3 by excluding the first
and the last substructures. However, we can also include them to the wave analysis by
substituting the boundary condition into equation (32) and obtain

ΦqQ + Φ?
qµµµ

NQ? −Φ?
q

N∑
k=1

µµµkQ
?(k)
B = 0

ΦFµµµ
NQ + Φ?

FQ? + ΦF

N∑
k=1

µµµN−kQ
(k)
B = 0

(43)

Then, we can rewrite to obtain equation (40) with

A =

[
In Φ−1q Φ?

qµµµ
N

Φ?−1
F ΦFµµµ

N In

]
, F =

[
Φ−1q Φ?

q

∑N
k=1µµµ

kQ
?(k)
B

−Φ?−1
F ΦF

∑N
k=1µµµ

N−kQ
(k)
B

]
(44)

The beam is considered of 20 substructures which are squares of dimension a = 0.1m
and the same thickness. With the external load at the third substructure, we have Q

(k)
B =

Q
?(k)
B = 0, ∀k 6= 4. By using the finite element method, we obtain the DMS of the

substructure with the mesh of 10x10 elements. Figure 3 show that the WFE has the
same quality as the FEM. Moreover, the calculation time for WFE is 4.08s while 58.22s
for FEM, equivalent to 93% of time reduction.

We take another example of a pipeline under pressure as shown in Figure 4. The
pipeline is a cylindre of radius 1m and thickness 5mm, made of steel with Young modulus
210GPa and Poisson coefficient of 0.3. The cylindre has two fixed ends and it is subjected
to a dynamic pressure. Figure 5 presents a comparison of the results between the finite
element method and the wave finite element method. The calculation time is reduced from
1277,7s with FEM to 332,8s with WFE, that means a reduction of 76% of calculation time.

8
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Figure 3: Response of the fixed-free beam

Figure 4: Fixed-fixed pipeline subjected to dynamic pressures
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Figure 5: Response of the pipeline
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5 CONCLUSION

This article presents a new development of WFE for the periodic structure subjected
to external loads. It is significant because it open more application domain for WFE. The
numerical application once again conclure the efficience of WFE in term of calculation
time in comparing with classical FEM.
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A CALCULATION OF DMS APPROACHE

By using the othogonality of the wave base, we obtain the following result from equation
(28)

Φ∗TJu(N+1) = µµµNΦ∗TJu(1) +
N∑
k=1

µµµN−kQ
(k)
B

ΦTJu(1) = µµµNΦTJu(N+1) −
N∑
k=1

µµµkQ
?(k)
B

(45)

By decomposing the components corresponding to q and F of u(1) and u(N+1), we get

µµµNΦ?T
q F

(1)
L + Φ∗Tq F

(N+1)
R = −µµµNΦ∗TF q

(1)
L + Φ∗TF q

(N+1)
R +

N∑
k=1

µµµN−kQ
(k)
B

ΦT
q F

(1)
L + µµµNΦT

q F
(N+1)
R = −ΦT

Fq
(1)
L + µµµNΦT

Fq
(N+1)
R +

N∑
k=1

µµµkQ
?(k)
B

(46)

Then, we can write[
µµµNΦΦΦ?T

q ΦΦΦ?T
q

ΦΦΦT
q µµµNΦΦΦT

q

] [
F

(1)
L

F
(N+1)
R

]
=

[
−µµµNΦΦΦ?T

F ΦΦΦ?T
F

−ΦΦΦT
F µµµNΦΦΦT

F

] [
q
(1)
L

q
(N+1)
R

]
+

N∑
k=1

[
µµµN−kQ

(k)
B

µµµkQ
?(k)
B

]
(47)

10
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By substituting equation (24) into equation (47), we obtain

N∑
k=1

[
µµµN−kQ

(k)
B

µµµkQ
?(k)
B

]
=

[
µµµN−k (µµµ−1ΦΦΦ?T

q DLI + ΦΦΦ?T
q DRI

)
−µµµN−kΦΦΦ?T

q

µµµk
(
µµµΦΦΦT

q DLI + ΦΦΦT
q DRI

)
−µµµkΦΦΦT

q

][
F

(k)
I

F
(k)
B

]

=

[
µµµN−k−1ΦΦΦ?T

q µµµN−kΦΦΦ?T
q

µµµk+1ΦΦΦT
q µµµkΦΦΦT

q

] [
DLI 0
DRI −I

] [
F

(k)
I

F
(k)
B

] (48)

In a similar way, we can write (see [2])[
−µµµNΦΦΦ?T

F ΦΦΦ?T
F

−ΦΦΦT
F µµµNΦΦΦT

F

]
=

[
µµµNΦΦΦ?T

q ΦΦΦ?T
q

ΦΦΦT
q µµµNΦΦΦT

q

] [
DLI 0
0 DRR

]
+

[
µµµN−1ΦΦΦ?T

q µµµΦΦΦ?T
q

µµµΦΦΦT
q µµµN−1ΦΦΦT

q

] [
DRL 0

0 DLR

] (49)

By substituting equations (48), (49) into equation (47), we obtain the result in equation
(29).
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