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Abstract. It is commonly assumed that the transition process from laminar to turbulent flow 

occurs because of an incipient instability of the basic flow field. This non-defined instability 

depending on subtle and obscure details of the free flow enters the boundary layer from where 

a variety of different instabilities can occur and grow up to the breakdown of laminar flow. The 

scenario following various linear stability approaches within a framework of the classical 

Navier-Stokes theory however failed to explain the origin and the mechanism of the transition 

process. The “original sin” lies just in the ignorance of the initial impulse triggering off an 

instability state. In the paper, this drawback is removed in the sense that any flow is started at 

some moment in time from rest, where the initial impulse/starting impact has occurred, and as 

long as the Reynolds number (or a similar stability parameter λ) doesn’t exceed a critical value, 

the flow/motion remains laminar/elastic regime. The wall-bounded motion, both for solids and 

fluids, is a rotor-translational motion creating permanently an instability state firstly in the 

linear/elastic range, and then followed by transition to non-linear instabilities at a critical 

threshold and a statistical/hysteretic damping state. By means of the model of rotor-translational 

motion, a universal stability parameter depending on the starting impact ( 2V ) is defined where 

such as parameter is the boundary Reynolds number 1/ 2/Rb e V   , (with e - the concentrated 

boundary vorticity, 1/ - the kinematic viscosity, 2  - a torsion index) for fluids and the wave 

number / 2 , ( 1, 2, 3)k n n    for solids.  

 

 

1 INTRODUCTION 

When the Reynolds is increased, the flows of real fluids differ from the quiet smooth flows 

known as laminar flows, and their opposite, either internal flows or boundary layers adjacent to 

solid surfaces undergo a spectacular transition process from the laminar to the turbulent regime. 

In the turbulent flows the vorticity, pressure, temperature and other fluid mechanical quantities 

fluctuate in an observable disordered-manner with extremely sharp and irregular space and time 

variations. The observation that the orderly pattern of flow ceases to exist at higher Reynolds 
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numbers, and that the flow through a pipe becomes turbulent was firstly shown by O. Reynolds 

[1]. Unlike other complicated phenomena, turbulence is easily observed, but is extremely 

difficult to interpret, understand, explain and non in the last place to simulate. Since the 

turbulence dynamics is a rapid process originated at the fluid-solid boundary interface ( 0y 

) laying in packets of vorticity/shear waves caused by the onset of motion [2], the classical 

approaches based on the Navier-Stokes equations (N-S equations for short) with Stokes (𝜆 =
−2/3𝜇) and Prandtl (constant viscosity µ) hypotheses could statistically describe (URANS, 

LES computations) only large-scale slow phenomena “en mass”. The true problem of 

turbulence dynamics generated by high frequency wall-vorticity waves, requests a new 

formulation of N-S equations near the wall, for taking into account the effects of twisted flow 

during the starting impact: the concentrated/twisted boundary vorticity (CVB) and the non-

linear behavior of fluid (the thixotropic fluid hypothesis,  Rel ) [2]. However, since such a 

formulation is not available at this time, the whole flow field is described by the soliton 

solutions derived from similar solutions (localizing boundary singularities) associated with a 

mutual induction function, CBV – ν (Rel), acting as a substitute for the Stokes’s hypothesis 

which annihilates the turbulent solutions; i.e. valid Stokes’s hypothesis, no solution for 

turbulence exists. The soliton solutions exhibit both average flow field and wavy flow pattern 

frozen at a given instant (i.e. relativity effects) and transported by the main motion as a whole 

[2],[3].  

2 THE PHYSICAL NATURE OF VORTICITY AT A SOLID BOUNDARY 

The vorticity is a kinematical quantity and the equation governing its evolution, known as 

Helmholtz’s vorticity transport equation, is derived from the N-S equation by a purely 

mathematical operation, so that this contains the same restriction as the original N-S equation, 

based indirectly on the concept of the point material excluding any inertial rotatory effect. The 

most primary derived fields that describe the local spatial variation of a velocity field u are its 

divergence (∇ ∙ 𝒖), a scalar field called dilatation and its curl (∇ × 𝒖), an axial vector called 

vorticity. The dilatation measures the expansion or compression of the fluid, while the vorticity 

measures the rotation of fluid particles, as sketched in Fig. 1. 

 
                                 a                            b 

Figure1: The velocity field associated with: a) dilatation – compressing/ expanding process and b) vorticity - 

shearing process at the wall. 

Thus, the dilatation represents an isotropic compressing process, while the vorticity is a non-

isotropic shearing process. The effort to explain vortical flows as diversely as possible, by 

means of coupling of compressing and shearing processes into a unitary approach [4], was not 

very successful: vorticity-creation from the wall. The shear turbulence processes remain further 
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unknown as long as the fluid is assumed ideal or Newtonian; i.e. no-elasticity shear in fluid, no 

turbulence exists. 

Historically, the viscosity property of fluid was used by Stokes [5] in the famous Navier-

Stokes equation (NSE) as an intrinsic relation between the first and second viscosities (

3 0   ), for reducing the number of properties which characterizes the field of stresses in a 

flowing compressible fluid. The ignorance of the physical interpretation of the Stokes’s 

hypothesis has lead to the much disputed problem concerning the NSE solutions [6]. After half 

a century, the practical importance of NSE was proved for solving d’Alembert’s paradox (D – 

drag crisis) by means of another famous mathematical development, Prandtl’s boundary layer 

theory [7]. But, in spite of these heaviest and the most ambitious armory from theoretical 

physics and mathematics, the solution of the full time-dependent 3D NSE for turbulent flows 

is far (or impossible) from being found. The big mathematical problem of turbulence remains 

unsolved as a new challenge in Fluid Dynamics, T – turbulence paradox. Indeed, the approach 

of turbulence via the NSE with the Stokes approximation disregards the detailed wall-bounded 

flow structure at the starting moment ( 0, 0y t  ), where the initial and boundary conditions, 

 0, 0t u  (no slip condition) and 0/      (equilibrium value) corresponds exactly to one 

flow state called Blasius flow. The Stokes relation associated with the incompressible flow 

assumption (ρ = const.) obscure the easiest compressibility effects occurred during the short 

starting time ( 0t  ) at the solid boundary, acting like a fluid-solid collision called the starting 

impact [2]. 

After impact, any flowing incompressible flow has a more or less non-constant/elastic shear 

viscosity at solid boundaries, and whereby the shearing is also a universal process causing 

transverse waves that expands in the boundary-layer flow; when the Reynolds exceeds a critical 

value, the shearing process becomes a self-sustaining one, generating vortices.  

3 THE DYNAMIC MODEL OF STARTING IMPACT-ROTOR-TRANSLATION 

MOTION AT WALL 

Among various wall-bounded flows at large Reynolds numbers, the primary observable 

structure is thin boundary layers generated by and adjacent to solid surfaces. In these vortical 

flows generated by a moving body, the formation and evolution of boundary layer are closely 

related to the vorticity-creation process at a solid surface during the onset of motion. 

The motion at impact ( 0t  ). Even if a flow is incompressible, its starting produces weak 

compressibility effects with important consequences concerning the motion following start up. 

The flow of a gas can be considered incompressible when the relative change in density remains 

very small,
2
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, and in the case of air usually a value of 

0.1 1/3M    or 100 𝑚/𝑠 can be considered as an incompressibility limit. 

However, for 𝑉∞ = 100 𝑚/𝑠 and 𝑙 = 1, the Reynolds number (𝑅𝑒𝑙 = 2/3 ∙ 107) exceeds its 

critical value, that is the flow is fully turbulent where there is the possibility that in starting 

condition (t = 0) the easy/early compressibility effects cause the oscillating behavior of 

viscosity and associated with an inherent fluctuating velocity field, near solid surfaces, produce 

a self-sustaining non-stationary flow termed generic shear turbulence [2]. Figure 2 shows the 

dependence of elastic shear viscosity due to the early compressibility effects in wall-bounded 
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flows, where the crests of the longitudinal compressing/expanding process propagate with the 

group velocity 𝑀𝑔 = 2/3. The Reynolds number has a more general interpretation of the 

classical parameter as a stability standard/control parameter of the flow state (the flow is stable 

for 𝑅𝑒𝑙 ≤ 𝑅𝑒𝑐 and unstable for 𝑅𝑒𝑙 > 𝑅𝑒𝑐), and the Reynolds number is also a current reduced 

frequency for all real fluid motions. 
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
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Figure 2: Elasticity effect in thixotropic fluid (longitudinal compressing/expanding process). 

Then, we define the start-up by the impulsive phase change from the natural translational 

motion to a pure shear straining rotational motion (i.e. in the limit of vanishing contacting time) 

with no-loss of mass, energy and momentum, as sketched in Fig. 3. 

 

Figure 3: The impulsive phase change during the start-up with equal-energy partition condition (transverse 

shearing process) 

During the starting impact, the initial velocity distribution is rapidly changed and the result 

of the coupling of some compressing and sheering processes is the creation of concentrated 

vorticity balls at solid surfaces as  
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where e is the CBV, ν is the kinematic shear viscosity of the thixotropic fluid adjusting itself 

mutually according to the stress state of flow,  2 ( 2)     is the concentration/torsion index 
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showing the twisting degree of flow, and 𝑝𝑤,𝑡𝑜𝑟𝑠𝑖𝑜𝑛 is the wall-perturbed pressure, generally 

greater than the pressure of free flow, termed torsion pressure [8]. 

 

The essence of starting impact is: (1) the creation of twisted contact structures, like the CBV, 

through a fast compressing-shearing rotation process, accumulating internal/intrinsic energy in 

the form of inertial rotation potential; (2) the partition of post-impact motion in the proportion 

of 1/3 pure straining rotation and 2/3 natural translation is universal feature for any plane 

motion of restricted continuous media; (3) the wall-bounded motion after impact is a rotor-

translational motion with two invariants: a kinematic one 𝑉∞ /𝑟Ω = 2, and a dynamic other 

2𝑉∞
2/ 𝑟2  Ω2  = 3 ≈ 𝜋 (azimuthal wavelength), which is a measure of twisted boundary 

vorticity. 

The two properties of the thixotropic fluid, CBV ( e ) and shear viscosity (ν), have opposite 

tendencies “return force”/shearing process and “rotational inertia”/compressing process, where 

the wall torsion/twisted pressure must obey the law of equal action and reaction in the form of 

an equal-energy condition 

2/ 1e V
  . (1) 

The outcome of Eq. (1) expresses a gross dynamic balance governing the whole dynamic 

process of motion. Physically, the wall torsion pressure is a rotatory energy, where the fluid 

strained by the wall has rather a solid body-like behavior with angular velocity e  and angular 

momentum ν. Since their product must be equal to the kinetic energy 2/ 2V , the wall torsion 

pressure excepting of a scale factor 2l  defines a boundary Reynolds number (per m2) which is 

a kind of normal angular acceleration, 

2 2/Rb e l s      . (2) 

In contrast to the well-known Reynolds number 𝑅𝑒𝑙  which is a control parameter of 

flow state, this new boundary Reynolds number Rb is an order parameter switching the flow 

state. Its critical value, 

2 1 1
0 0,  the natural frequency of thixotropic fluidcrRb e      , (3) 

is a non-rolling condition for the CBV, which separates the non-periodic creeping 

motion/laminar flow from the non-linear torsional vibration motion/turbulent flow. 

The parameter Rb is an autonomous parameter depending only on the intrinsic state of fluid 

at the wall, where a first approximation of the starting condition of equal-partition of energies, 

(Eq.1), is Rb = Rel. Using the end properties of the thixotropic fluid ( 2
0,1;1,e  ) and the 

approximation Rb = Rel, the parameter Rb describing the local state of fluid can be predicted 

by means of three power law-like relationships, depending on the intensity of starting impact 

[2] as 

   
1

1 1
0 , 2,1,0  for the inelastic impacte    , (4a) 
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 1
0 , 0,1,2  for the linear/elastic impacte   , (4b) 

𝑒−𝜏(𝜈0
−1)

3

2, 𝜏𝜖 {2, 1,
1

2
}  for the nonlinear/ballistic impact.      (4c) 

Equations (4) act as a substitute for the Stokes’s hypothesis which is a condition too 

restricted (valid only for an elastic impact). In fact, the CBV eτ and viscosity ν are the first and 

second viscosities for a thixotropic fluid. 

The post-impact motion (𝒕 >  𝟎). The motion following impact is a boundary-layer 

structure with 2/3 translational motion and 1/3 rotational motion embedding shear 

concentrated vorticity at the wall, in a compact texture of laminar flow, and dispersed vorticity 

“en mass”, i.e. the residual vorticity, across a turbulent boundary layer with a less tight texture. 

The rapid loading in the contacting area of the solid boundary, during the starting, is a source 

where instabilities are produced and then propagated as linear/elastic and nonlinear/dispersion 

body waves. The local instabilities at the fluid-solid boundary interface, propagate as three 

wave packets/groups containing fast compressing/expanding longitudinal (L) waves and slower 

shearing transverse (T) waves that are mutually dependent (see § 4). 

The kinematics and the dynamics of shear turbulence can be conceptually synthesized by 

means of the rotor-translational motion model as follows: 

- The cycloidal/Legendre trajectory of a fluid particle at the wall generates itself a circular 

instability ( (0) 0, (0) 0 u a ) stronger than the static instability ( (0) 0, (0) 0 u a ) in 

laminar flows; 

- The post-starting motion develops a boundary-layer structure set up into a non-

autonomous outer layer/inertial phase with the average group velocity of 
2gV

V 

 , and 

an active autonomous inner layer/non-inertial phase at the fluid-solid boundary (y = 0) 

with the phase velocity of 
4phV

V 

  (the jump of average transverse velocity) in the 

circular/azimuthal plane (0,2 ) ; 

- The wall wave packets have a phase velocity twice the group/convection velocity; 

- The wave pattern is differentiated by the intensity of impact as shown in Fig. 4. 

 

 
 

 

 

 
 

 

a b c 
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d e 

Figure 4: The causality of a plane motion (the evolution of an energy perturbation ( 2V ) carrying a change (

2
0 ,I e ) concomitantly with its damping): a) starting impact (equal-energy partition condition; b) inelastic 

impact (λ<1) with shearing friction; c) inelastic impact ( 11 3 / 2     ), steady rolling without slip; d) 

linear/elastic impact ( 1 2 5 / 2      ), unsteady rolling/torsional elastic waves without slip; e) 

nonlinear/ballistic impact ( 2  ), unsteady rolling/nonlinear torsional waves with slip. 

The intensity of a starting impact is measured by a non-dimensional normal rotational 

acceleration 
2

na

r



 and units of g   (g is the acceleration of gravity and π is wavelength 

of motion), on a scale of 1 to 10. The parameter λ plays the role of a stability parameter for 

moving bodies in a plane motion, showing the instability level (π) closely related to the intensity 

of its cause g  (the starting impact) 

 2 1
, with 1,2,3

2
i

i
i

 
   . (5) 

as follows: 

- 1 4.71   is the Feigenbaum’s criterion (4.669…) indicating the onset of the linear 

instability state at the molecular scale; for 1    the impact is an inelastic impact 

without microstructure change. 

- 2 7.79   indicates the onset of the nonlinear instability state; for 1 2      the impact 

is a linear/elastic/random impact preserving the Gaussian behavior of the molecular 

microstructure without inertia changes/deformations at the macroscale; 

- for 2    the impact is a nonlinear/ballistic impact involving irreversible 

microstructure changes with nonlinear material behavior and structural 

damping/hysteretic (remanent deformations), [9]. 

Therefore, any energy perturbation propagates at high frequencies in the localized form of a 

three wave packet of inertial nature (a “lifting” effect, Fig. 4). 

In the case of following fluids, the local stability parameter is logRb  where 

-  1
0logRb logRe log 4.82in cr
     is the onset of instability state; 

-  2 1
0logRb log 5.7cr e    ≈ 2𝜋 is the onset of transition process; 

- 

1
1

1/ 2 2
0log Rb log 7.0st e

 
    

 
   
 
 

 is the full/statistic turbulent state. 
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The analogy between the stability state of solid and fluid media shows some difference in 

the elastic range (shorter for fluids) because of the less elasticity of incompressible flows by 

comparison with the solid bodies. However, the surprising similitude between the stability 

parameters λ and Rb , in fact both wave numbers, shows the universal character of the starting 

process of a moving continuous medium.  

4 THE SHEAR VORTICITY WAVES AND SELF-SUSTAINING MECHANISM OF 

TURBULENCE 

Commonly it is assumed that the transition process from laminar to turbulent flow occurs 

because of an incipient instability of the basic flow field. This non-defined instability intimately 

depends on subtle and obscure details of the flow [10]. Thus, the some small disturbances in 

the freestream enter the boundary layer from where a variety of different instabilities can occur 

and grow up to the breakdown of laminar flow. The scenario following various linear stability 

approaches within the framework of the classical Navier-Stokes theory [11], however, failed to 

explain the origin and the mechanism of the transition process. The “original sin” lies just in 

the ignorance of the initial impulse triggering off a primary instability state. This drawback is 

removed in the sense that any flow is started at some moment in time from rest, where the initial 

impulse/starting impact is occurred, and as long as the Reynolds number or a similar stability 

parameter λ doesn’t exceed a critical value ( 2Rb ,cr  ), the flow/motion remains laminar/in 

elastic regime. As the Reynolds number/λ increases, some instability sets firstly in the 

linear/elastic range, being is followed by the transition to nonlinear instabilities, at the critical 

Reynolds number Rb 5.69cr   2(or 7.79)  , and a fully developed turbulent/hysteretic damping 

state, Figs. 4, 10. 

The transition from linear behavior to nonlinear behavior occurs when a threshold regime is 

attained and is closely related to the boundary singularity at y = 0, which in laminar regime is 

a static singularity ( (0) 0, (0) 0 u a ), while in wall-bounded turbulent flow is a weak circular 

singularity with high frequency (  (0) 0, (0) cos / 2t    u a ). The circular singularity at the 

contact point (y = 0) is analyzed in circular/azimuthal plane for a disc structure, Fig. 5.  

Figure 5 shows the main differences between the models of zero-thickness inner layer (y = 

0): inertial (fixed) material point for elastic dense structures (laminar flow) and non-inertial 

(free) material point for hysteretic less tight structures (turbulent flow). 

 

  
                         a b 

Figure 5: Local models of zero-thickness inner layer (𝑦 = 0): a) inertial material point in the 2D plane (zero-

acceleration parallel flow model); b) non-inertial material point in the azimuthal plane (rotor-translation motion 

model with (ρ, γ, δ) shear waves). 
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As we move on from inertial rectilinear (x, y) to consider curvilinear shear flow we have 

defined shearing/torsion (γ), compressing/inertia (ρ) and their rates as 

 , 1

4 sin / 2 2sin / 2

dV t V

dy a




   
 

, (6a) 

2

2

cos / 2

sin / 2

d

dt

 
  


, (6b) 

  2 33
, cos

2 2
I t a


      , (6c) 

29
cos / 2sin

8

d
a

dt


       . (6d) 

From Eqs. (6a) and (6b) we can obtain the torsion degree τ of the wall-bounded flow as 

 
1

ln 2cot
2

d

dt


   


. (7) 

where for / 2 and 2     the torsion is linear while for / 2 and 2     the torsion is 

nonlinear. Apart from some dimensional constants the shearing (γ), compressing (ρ) and the 

mutual dispersion function 𝛿(𝛾̇ ↔ 𝜌̇) represent dynamic processes with high frequency on 

different azimuthal mode shapes in the form of three coupled shear waves: the elastic shear 

wave (γ), inertial compressing wave (ρ) and dispersion wave (δ) induced by the 

circular/azimuthal boundary singularity. In fact, the shear waves (ρ, γ, δ) are respectively, 

transport, relative and Coriolis components of acceleration a(0) of the non-inertial/free point    

y = 0 ( (0) 0, (0) 0 u a ), physically describing distinct states of twisted vorticity as pressure (𝜌) 

membrane (𝛾) and spray (𝛿). 

The shear waves lie in the origin of coherent structures in shear flows and their dynamics is 

associated with the phenomenon of bursting [12] (see Fig. 6). 
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Figure 6: Local coupling of shearing (𝛾), compressing (𝜌) and dispersion (δ) (self-sustaining mechanism of wall 

turbulence). 

A priori transition, wave number trk k , the dispersion process can be ignored and the local 

dynamic balance between “shearing elastic force (γ)” and “compressing inertial force (ρ)” is 

described kinematically by linear torsional vibrations  

2 0k   , (8) 

with the wave number 𝑘 < 𝑘𝑡𝑟  = 2𝜋  and the torsion index 𝜏 < 2.  

At the transition trk k , the starting impact is a ballistic one where the twist of contact 

structure exceeds 2𝜋, followed by fluid microstructure changes with a nonlinear/hysteretic 

damping behavior (i.e. non Gaussian) of twisted boundary vorticity and an abrupt intensifying 

of dispersion process (δ) on account of the intrinsic energy (compressing “latent” heat) of fluid. 

All coupled processes (shearing, compressing and dispersion) are running as a whole (the self-

sustaining mechanism of turbulence) up to the point where the starting energy perturbation (e2) 

is offset/damped by its dispersion and embedding in a new microstructure of fluid 

(compressible fluid at 𝑅𝑒𝑖𝑛𝑑𝑖𝑓𝑓 ≈ 108).  The dispersion process is a sort of inertial Coriolis 

force producing intermittent lifting effects as sketched in Fig. 6. 

The local dynamic balance between the fast shearing, hysteretic compressing and dispersion 

processes can be kinematically described in phase plane by the nonlinear equation (9) of the 

torsion pendulum with hysteretic damping, Fig. 7. 

 

        a 

 
               b 

Figure 7: The fundamental “cat-eyes” coherent structures (CES) at the wall: a) torsion pendulum mechanism: 

phase curves and separatrix (τm = π) of motions in the phase plane; b) topology of wall-bounded motion in the 

azimuthal plane (y = 0) and the bursting phenomenon ( wp - jump of wall pressure). 

2 sin 0k   , (9) 
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where the limit of small amplitudes 2m   renders the linearized solution and constant period 

2 / 10 k
lT     . In the phase plane (  / k  ) a limit cycle exists for m  , indicating a 

rotational motion, while the solution for m   is no longer closed and is extended to infinity 

as a translational motion. A separatrix for m   in the phase plane, separates the two kinds of 

motion (Fig. 7a), [2]. 

Note that the most primary concentrated vorticity ( e ) structure nearest the wall (y = 0), 

moving independently from the streamlines (translation motion), is a “cat-eyes”-like coherent 

structure (CES), educed from Eq. 9, Fig. 7b. The CES is the fast inertial/compressing wave (ρ) 

of Lagrangian nature, extracting the molecular thermal energy of fluid for the sustenance of the 

slower shear (γ) and dispersion (δ) waves. The whole shear wave packet, i.e. the soliton 

coherent structure (SCS) penetrates then the outer inertial layer activating the wall-bounded 

flow. 

The parametric evolution of the transition process, from laminar to turbulent flow in the 

Prandtl boundary layer flow, can be visualized by means of the similar soliton solutions [2], 

(Fig. 8) and the generalized Stokes’s hypothesis from Eqs. 4. It is worth marking that at 
7Re 10l  , the separatrix of motions is achieved (a wall effect termed “intrinsic/molecular slip”) 

and further the Reynolds number is practically indifferent towards flow and the local isotropy 

is restored. 

   
                                                                         a 

   
          b 

Figure 8: Similar soliton solutions of mean velocity and shear wave fields with a generalized Stokes’s 

hypothesis (Eqs. 4) for the Prandtl boundary-layer flow: a) laminar flows (linear/elastic impact): 

0 1 5 2 1 5
0 0( 10 ) ( 5 10 )Rb e e       ; b) transitional-turbulent flows (nonlinear/ballistic impact):  

𝑅𝑏 = 𝑒−
2

3𝜐0

−(1+
1

3
)
(≈ 106), 𝑒−

1

2𝜈0

−(1+
1

2
)
 (≈ 107),   𝑒−

1

3𝜈0

−(1+
2

3
)
 (≈ 108). 

5 CONCLUSIONS 

The paper presents an unitary approach of the plane motions strained by boundaries for a 

continuous medium, fluid or solid. The key hypothesis for such motions is the fact that the onset 
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of motion is a kind of impact (starting impact) which governs the subsequent evolution of 

motion. The starting impact is an energy perturbation localized in a wave packet at the fluid-

solid boundary interface, which has the important advantage concerning the transport of the 

perturbation energy concomitantly with its damping. The ignorance of this initial impulse as a 

twisted contact structure triggering off further instabilities (bifurcations), followed by transition 

and a hysteretic damping, led to a branching in the phenomenology of turbulence which 

sometimes obscured physical and mathematical justification. 

The present approach follows a direct reasoning from the origin/causes (twisted contact 

structure) to diverse facts/effects where in the case of complicated turbulence phenomenon, the 

ignorance of its causes gave birth, in exchange to, a number of beautiful images of turbulent 

flows easily observed, but extremely difficult to interpret, understand and explain. 

By means of the model of starting impact-rotor translational motion at the wall, the paper 

proposes a universal stability criterion/parameter which governs the stability state along the 

successive development of motion, from the origin up to when an ultimate (statistical) state is 

restored. Thus, the transition process becomes a well-defined state as the jump from linear (twist 

<  2𝜋) to nonlinear (twist ≥  2𝜋) behavior for both solid and fluid plane motions. 
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