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Abstract. Tubular extendable booms, featured by small stowed volume, light weight and 
large magnification ratios, have greatly promoted the development of spacecraft deployment 
missions. This paper studies the dynamic characteristics of a rotating tubular extendable boom 
made by tape spring. The boom deploys a tip load, the MEMS sensor, away from the 
spacecraft to detect the space environment such as temperature and magnetic field. The 
dynamic characteristics of the rotating boom are studied by a one-dimensional unified 
formulation, enhancing the capabilities of beam elements to detect shell-like solutions for the 
boom. Results show that the natural frequencies of the boom generally increase with the 
rotating angular velocity. However, they diminish rapidly at the critical velocity, where the 
first order natural frequency is close to zero and the structure suffers from resonance and large 
deformation. In addition, the mass effect of the tip load has a serious negative impact on the 
natural frequencies of the boom, especially the low-order ones. A heavier tip load tends to 
result in lower natural frequencies and critical velocity. While larger base radius can improve 
the dynamic characteristics of the rotating boom. The results obtained from this paper can 
provide reference for the design and control of tubular extendable booms. 
 
1 INTRODUCTION 

Space tubular extendable booms is a particular kind of one-dimensional deployable 
structures featured by small stowed volume, light weight and large magnification ratios. 
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These booms are widely used as simple and reliable preference for deploying light payloads 
such as the MEMS sensor to detect the space environment. The mass effect of tip load may 
seriously influence the dynamic characteristics of the boom and even cause structural 
resonance. To reduce the probability of structural damage, the dynamic characteristic of the 
boom with tip load needs to be carefully analyzed by an accurate and efficient method. In this 
paper, the one-dimensional unified formulation is used to enhance the capabilities of beam 
elements to detect shell-like dynamic solutions for the rotating boom. 

The dynamic analysis of flexible hub-beam system with tip mass is studied by various 
researchers. Yang[1] presents a finite element model with a second order approximation for the 
displacement field to study a flexible hub–beam system with a tip mass. Cai[2] proposed a 
first-order approximation coupling model to study the dynamic characteristics of a hub-beam 
system with subjected to tip mass. Emam[3] studied the dynamics of a hub- geometrically 
nonlinear beam with a tip mass, and the hub was restrained by a translational and a rotational 
spring. Bai[4] applied the assumed mode method and Lagrangian principle to study the 
dynamics of a rotating hub-beam system with a tip mass. Ghaleh[5] researched the approximate 
solutions for dynamic characteristics of axially moving beam-like appendages with tip mass. 
Wei[6] proposed the global mode method to construct a reduced-order analytical dynamic 
model for a manipulator with tip mass. Ghaleh[7,8] investigated the deployment inertial effects 
of a space boom on its dynamic analysis and the dynamics of finite-mass satellites with a 
elastic boom. 

Carrera’s unified formulation (CUF) is a new general modeling theory proposed by Carrera 
for solving thin-walled beam models[9]. The main idea is to construct a three-dimensional 
displacement field of the beam by interpolating the displacement field of the section. The 
expression of the equation of motion is simplified by introducing the Einstein notation to 
construct the nucleus matrix. CUF is used to perform analysis of the statics problem[10] and the 
free vibration problem[11,12]. Results show that the CUF has a strong ability to study the shell-
like properties of complex beam structures, especially thin-walled beam structures. Carrera[13] 
further extended the formula to analyze the effect of non-structural mass on thin-walled 
beams. Carrera[14] also used CUF to perform free vibration analysis of rotating structures. 

In this paper, the dynamic characteristic of a rotating space tubular extendable boom is 
studied by using the one-dimensional Carrera’s unified formulation, and the effect of the end 
mass, the base radius, and the angular velocity is valuated. Firstly, the coordinate systems and 
model assumptions of the boom are given based on the aerospace application background. 
Then, the dynamic models of the boom and the tip load are established by using CUF, and the 
equation of motion is expressed in the form of nucleus matrix. Finally, the dynamic 
characteristic of the boom is studied, and the effect of tip mass, base radius, and angular 
velocity is evaluated. 

2 PROBLEM FORMULATION 

The space tubular extendable boom is clamped to a satellite which is much heavier than the 
boom, and thus the satellite is modeled as a rotating rigid base of radius 0r . After deployment, 
the boom is formed into a slender, straight, and thin-walled configuration of length BL . Figure 
1 shows the cross-sectional circular configuration of the boom, and its arc is denoted by 
radius 1r , angle θ , and thinness h. The boom material is linearly elastic with Young's Modulus 
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E and Poisson's ratio  . In all, the tubular extendable boom is modeled as a three-dimensional 
beam rotating around a fixed base. 

 
Figure 1: Cross-sectional circular configuration 

2.1 Coordinate systems 

Several Cartesian coordinate systems are established to describe the kinematics of the 
rotating beam, including inertial coordinate system, body-fixed coordinate system attached to 
the base and beam. The description of these coordinate system is as follows: 

(1) Global coordinate system O-XYZ is an inertial coordinate system in uniform motion, 
serving as a reference system for the base motion. 

(2) The body-fixed coordinate systems o-xyz and s s s so -x y z  are attached to the satellite, and 
they are moving and rotating in the inertial space. The origins of coordinate systems o-xyz 
and are located at the base center and the boom root, respectively. Their motion with respect 
to the inertial coordinate system are described by the rotation angles of the base. 

(3) The body-fixed coordinate system  i i i io -x y z i=1, ,n  is a local coordinate system 

attached to the ith beam element. When the finite element method is using for discretization, 
the relative position of each point on the beam element is described by the local coordinates 
whose origin is located at the element. 

 
Figure 2: Description of the coordinate systems 

2.2 Assumptions 

To develop the kinematic description and dynamic equation of the tubular extendable 
boom, the following assumptions are postulated: 

(1) The influence of the deployment mechanism is ignored. The mass and damping effect 
of the bolts are ignored. After deployment, the translational and rotational motion of the boom 
root are constrained. 

(2) As for overall motion of the satellite, only rotation is considered to influence the boom 
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dynamics. Translation motion of the satellite is ignored, and the boom center line is assumed 
to be in the rotation plane of the satellite. 

(3) The boom is assumed to maintain its stiffness after the deployment process. It is 
believed that the boom completely recovers its original structure and there is no residual stress. 
The influence of the space environment on boom stiffness is neglected. 

(4) The boom deformation satisfies the small deformation assumption, and the material 
properties satisfy the generalized Hooke's law. 

(5) Bending-torsional coupling and cross-sectional warping deformation is considered 
when modeling the thin-walled boom. 

(6) The satellite is assumed to be moving in a uniform velocity on the orbit. 

3 BOOM MODEL BY UNIFIED FORMULATION 

3.1 Unified formulation 

The unified formulation is adopted to describe the 3D displacement field of the beam. By 
using Einstein’s notation to expand the generalized displacements above the cross-section, the 
displacement vector is expressed in a simple form as 

 , 1,2, , uF M  τu u    (1) 

where F is expansion function depending on the cross-sectional coordinates; τu  stands for 
the generalized displacement vector depending on the axial coordinate; and uM  represents the 
number of expansion terms. For the circular cross-sectional beam studied in this paper, 
Taylor-like polynomials are chosen as the expansion functions[10]. The beam axis is assumed 
to be in the y direction, then F  is the function of x and z. Table 1 exhibits uM  and F  as 
functions of M. 

Table 1: Expansion functions 

N  uN  F   

0 1 1 1F    

1 3 2 3F x F y 

2 6 2 2
4 5 6F x F xy F y     

3 10 3 2 2 3
7 8 9 10F x F x y F xy F y      

      

N     1 2

2

M M      2 2

1 1
3 1 22 4

2 22 2

M M M M
M M M MM M M M

F x F x y F xy F y 
     

      

When the finite element method is used to discretize the 3D beam, the displacement field 
could be expressed by shape functions iN  and the generalized nodal displacement vector τiq  
as 

        T
, , , , , ,

1,2, , 1,2, ,

i x i y i z i

u

x y z F x y N z q q q

M i n

   



 

 
τi τiu q q

 
  (2) 
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3.2 Boom kinematics 

As shown in figure 3, the hybrid coordinate method[15] is used to describe the overall 
motion of the 3D beam. For simplicity, the origin of the global coordinate system O-XYZ is 
moved to the base center. 0r  and r  are respectively the position vectors of the boom root and 
a beam point in the global coordinate system. 0ρ  and ρ  are the position vectors of a beam 
point before and after deformation in the body-fixed coordinate system o-xyz. u  is the 
deformation vector in xyz frame. 

O

θ

P0

P

Boom

Tip load

X

Y
Z

o x

y
z

0r

ρ

0ρ

r
u

 
Figure 3: Kinematic model of the boom 

Transformation between XYZ and xyz frames is related to the rotation angle  . If the 
beam is rotating about the Z axis, then a transformation matrix is given by 

 
1 0 0

0 cos sin

0 sin cos

 
 

 
   
  

A   (3) 

The position vector of the beam point in XYZ frame could be also expressed as 

  0 0 0    r r Aρ r A ρ u   (4) 

The variation of the position vector r , also known as the virtual displacement, is derived 
by 

  0 0      r r IA ρ u A u   (5) 

where I  is an anti-symmetric matrix expressed by 
0 0 0

0 0 1

0 1 0

 
   
  

I   

By introducing the unified formulation of displacement vector u , the virtual displacement 
vector, the velocity vector and the acceleration vector are given by 
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 
 
   

0 0

0 0

2 2
0 0 0 2

i i i i

i i i i

i i i i i i i i

F N F N

F N F N

F N F N F N F N

   

   

       

   



  

   

   

      

r r IA ρ q A q

r r IA ρ q A q

r r IA ρ q A q I A ρ q IA q



  
       

  (6) 

3.3 Tip load kinematics 

As shown in figure 4, the tip load and the boom are connected by two bolts. Almost no 
deformation occurs at the end of the boom and the end cross section could be modeled as a 
rigid body. The tip load is a cuboid with length Fl , width Fw , and height Fh . 

1nu

nu

Ku

/BL n

Kl

K

 
Figure 4: Kinematic model of the tip 

By introducing the unified formulation of displacement vector u , the displacement field on 
the end cross section could be written as 

    i ix,L,z N F x,L,z u u   (7) 

The displacement vector of a tip load point K can be obtained by 

  1 /K n K n n Bnl L  u u u u   (8) 

where Kl  is the distance from the point to the end cross section. The position vector of 
point K in XYZ frame is 

  0 0K K K   r Aρ A r ρ u   (9) 

The virtual displacement vector, velocity vector, and acceleration vector are also derived 
by 

 

 
 
   

0 0

0 0

2 2
0 0 0 0 2

K K K

K K K

K K K K K

  



  

   

   

       

r IA r ρ u A u

r IA r ρ u Au

r IA r ρ u Au I A r ρ u IAu



 
      

  (10) 

4 EQUATIONS OF MOTION 

Hamilton’s principal is implemented to derive the dynamic equation of the beam in the 
form as 
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  2

1

0
t

t
T U W dt        (11) 

where T , U , and W  are the kinematic energy, potential energy, and the work done by 
external forces.   represents variation. 

The variation of the kinetic energy can be deduced by using the Lagrange equation: 

  2 2 2

1 1 1

1

2 k k

t t t

t t V t V
Tdt dV dt dV dt        

     r r r r     (12) 

where r , r , and r  are the position vector, velocity vector, and acceleration vector of a 
point on the beam. The variation of the elastic potential energy could be divided into a linear 
part and a non-linear part. The linear part represents the variation of the elastic potential 
energy lU , and the non-linear part is mainly composed by the variation of the centrifugal 
potential energy nlU . 

4.1 Variation of energies 

The tip load is modeled as a rigid body, and its rotation motion is neglected. The tip mass 
has a great influence on the axial force of the beam. When calculating the nonlinear 
deformation energy of a beam, it is necessary to consider its contribution to the centrifugal 
force. 

The variation of the tip load kinetic energy is given by 

 

     
     
   

T T T T T
0 0 0

T T 2 2 T T
0 0 0

T T T 2 2 T
0 0

2

2

K
F F F

F F

F F F

T T
F K F k k F k kV V V

T T
F k k F k kV V

k F k k F k k F k k FV V V

dV dV dV

dV dV

dV dV dV

      

     

         

    

    

     

  
 
  

r r ρ u I I ρ u ρ u I u

ρ u I I ρ u ρ u I Iu

u I ρ u u u u I ρ u u

   

     

  
F

kV
dV Iu  

  (13) 

The variation of the beam kinetic energy is given by 

 

   

     
   

0 0
1 1

2 2
0 0 0

0 02

B B

k k

k k

k

N N
T T T

i i s j sjV V
k k

T T T T T T
i i s j sj i i s j sjV V

T T T T
i i s j sj i i s j sjV

dV F N F N dV

F N F N dV F N F N dV

F N F N dV F N F N d

 

   

   

   

    

    



 

  

    

   

  

 


r r ρ q I I ρ q

ρ q I q ρ q I I ρ q

ρ q I I q q I ρ q

 

  

  

 2 2
0 2

k k

k k

T
i i s j sjV V

T T
i i s j sj i i s j sjV V

V F N F N dV

F N F N dV F N F N dV

 

   

  

     



   

 

 

q q

q I ρ q q I q

 

   

 (14) 

The variation of the beam linear potential energy is directly given in literature[10]. 
The centrifugal stress in the boom can be obtained by D'Alembert's principle: 

   2 2 2
0 0

1 1
/ /

2 2n B BT y S T S r L L r y y          
 

  (15) 

The variation of the nonlinear strain energy is obtained by 

 
, ,

2

1

B

y y
k

N

nl i i s j l sjV
k

U F N F N M dV  


     q q   (16) 
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where  2 2
0 0 0

1 1
/ 2 /

2 2l B B F B FM r L L r y y m r L l S         
 

. 

In the above formulation,   is the rotation velocity, and S  is cross-sectional area. 

4.2 Dynamic equation 

The dynamic equation of the beam is obtained by using the Hamilton’s principal. To 
further simplify the form of the equation, the integral and matrix notations are introduced by 

 

 , , , ,

0 1 0 0 0 0

1 0 0 , , 0 0

0 0 1 0 0

, , , , , , , ,y y y y

ny S

i j ij i j j ji ij i i
L L L L L i i j j iL

dS

dN dNdN dN
I I I I I N N N N N dy

dy dy dy dy

   
         
      

 
  

 





I Ω 
  (17) 

When no external force is applied, the dynamic equation of a beam element is obtained as 

 ij s ij s ij s i
sj sj TOT sj TOT

      M q G q K q F 0    (18) 

where ij sM , ij sG , TOT
ij sK , TOT

iF  are the mass matrix, Coriolis matrix, the total stiffness matrix, 
the total force matrix in the form of the fundamental nucleus, repectively. 

ij sM  is an symmetric matrix expressed as 

 

 
    
      

  

1 1 2 2 2

1 1 2

2 2

1 2

/

/

/

ij s ij
k s

n n s ij
F F B k s

n n s n n s ij
F F B F B k s

nn s ij
F B F B k s

I F F i, j n

n l L I F F

nl L nl L I F F

L nl L I F F







 







 

 

 

 

 

   

 

   

  

M I

M I

M M I

M I

 

 

 

 

  (19) 

ij sG  is an antisymmetric matrix expressed as 

 

 
    

  

1 1

2 , 1 2

/ 2

/ 2

ij s ij
k s

n n s ij
F F B k s

nn s ij
F B F B k s

I F F i, j n

nl L I F F

L nl L I F F












 

 

 

   

 

  

G I Ω

G I Ω

G I Ω

 

 

 

  (20) 

TOT
ij s ij s ij s ij s ij s

l nl
    

    K K K K K  , where ij s
l
K  and ij s

nl
K  are the linear and nonlinear stiffness 

matrix, and ij s
K  and ij s

K   are the centrifugal softening matrix and the inertial stiffness matrix 

resulting from rotational angular velocity and rotational angular acceleration. These matrixes 
are expressed as 

 

,

,

, , , ,

y

y

y y y y

ijij s T ij T ij T
l p pp p s L p pn n s L p pn L ny

i jT ij T T ij
n np p s L p s np L ny n nn n s L

i j ij i jT T
n s nn L ny n s L ny s nn L n

F F I F F I F F I

F F I F F I F F I

F F I F F I F F I


  

  

  



  

 

  

  

  

K D C D D C D D C I

D C D D C I D C D

D C I D I C I

       
       

      
ij sT

y ny n


I

  (21) 
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  

, ,2

T T
0-

2

y y
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  (22) 

TOT
i i i  

  r r
F F F , where i

rF  and i
r

F  are the centrifugal force matrix and the inertia force 

matrix resulting from the rotational angular velocity and the rotational angular acceleration, 
respectively. These matrixes are expressed as 
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  (23) 

5 RESULTS AND DISCUSSION 

The natural frequencies of the boom with tip load are analyzed in this paper. A typical 
space tubular extendable boom is studied. The boom length BL  is 1200mm, and the cross-
sectional arc has a radius 1r  of 13.3mm, an angle θ  of 1.85rad, and a thinness h of 0.1mm. 
The ratio of base radius to boom length 0 Bδ=r /L  is selected as 0, 1, 2 and 3, and the ratio of tip 
mass to boom mass /t Bm m   is selected as 0, 1, and 5. In order to theoretically study the 
dynamic characteristics of the boom with tip load at various angular velocity, a large range of 
angular velocities are selected for the study. In this paper, the selection is 0-20 rad/s. 

Figure 5-7 shows the relationship between the first 5 natural frequencies and the angular 
velocity at different base radius and tip mass. The natural frequencies generally increase with 
the angular velocity, but they may diminish at certain angular velocity, especially the low-
order ones. For example, given  =1 and  =0, in the vicinity of the angular velocity of 10.2 
rad/s, the first order natural frequency rapidly decreases to close to zero. According to 
literature on rotor dynamics[16,17], this angular velocity represents the first order critical 
velocity of the rotating structure, where the structure may experience resonance and large 
deformation. When accelerating the angular velocity, the structural natural frequencies 
quickly recover to their normal values. Higher orders of critical velocity may exist when   
becomes larger. When  =1 and  =0, the rotating structure has a first order critical velocity 
of 3.2 rad/s, and a second order critical velocity of 7.8 rad/s. 
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Figure 5: Natural frequencies of the boom with tip load when 0   

When figure 6 and 7 are compared to figure 5, it is found that the mass effect of the tip 
load reduces the natural frequencies of the boom, especially the low-order ones. For the static 
natural frequencies, when   is selected as 1, the first 5 order are reduced from 3.134Hz, 
5.535Hz, 14.09Hz, 18.01Hz, 19.67Hz by 55.07%, 47.52%, 54.13%, 28.82%, and 24.50%, 
respectively. In addition, heavier tip mass leads to more reduction of natural frequencies. 
When  =5, the first three natural frequencies have been reduced by even more than 78%. 
Heavier tip load also results in lower critical velocity. When   rises from 1 to 5, The first 
order critical velocity =1 is reduced from 10.2rad/s to 4.4rad/s when  =0, and from 13.2rad/s 
to 4.6rad/s when  =1. 

 

 
Figure 6: Natural frequencies of the boom with tip load when 1   

It is obvious to conclude from the figure 5-7 that the natural frequencies and the critical 
velocities have been improved by larger base radius. With respect to the natural frequencies, 
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when  =0 and =20rad/s, an increase of   from 0 to 1, 2, 3 gives improvements of the first 
order natural frequencies by 53.15%, 91.89%, and 123.88%, respectively. For critical 
velocities, when  =1, an increase of   from 0 to 1 has improved the first order critical 
velocity from 10.2rad/s to 13.2 rad/s. When   is selected as 2 or 3, the first order critical 
velocity rises beyond 20rad/s. When  =10, an increase of   from 0 to 1, 2, 3 improves the 
first order critical velocity from 4.4 to 4.6, 4.8, and 5.0, and the second order critical velocity 
from 11.0 to 11.8, 12.6, and 13.4, respectively. To conclude, larger base radius can improve 
the dynamic characteristics of the rotating boom. 

 

 
Figure 7: Natural frequencies of the boom with tip load when 5   

6 CONCLUSION 

- The low order natural frequencies diminish rapidly at the critical velocity, where the 
first order natural frequency is close to zero and the structure suffers from resonance 
and large deformation. To ensure the structural safety, the angular velocity of the 
satellite needs to be controlled less than the first order critical velocity of the boom. 

- The mass effect of the tip load reduces the natural frequencies of the boom, 
especially the low-order ones. Heavier tip mass results in lower critical velocities and 
natural frequencies. So the boom needs to be carefully designed to match the 
designed tip load, angular velocity and base radius of the satellite. 

- To some extent, larger base radius can improve the dynamic characteristics of the 
rotating structure. Thus, placing the boom root far from the satellite center is helpful 
to the structural safety. 
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