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Abstract. The work is devoted to modeling the phenomenon of superelasticity, that is present 

in shape memory alloys (SMA), making use of peridynamics. SMA are a type of smart 

materials, in which solid phase transformations can be activated either by temperature change 

or external load. As found in the literature, there are known attempts at simulations of phase 

transformations in SMA introducing the above-mentioned nonlocal modeling technique. The 

superelasticity specifically refers to reversible phase changes, i.e. austenite-martensite-

austenite, observed in SMA due to cyclic external force loading and unloading. As a 

consequence, the strain-stress characteristics exhibit hysteretic behavior. However, no 

temperature variation is needed for superelasticity to initiate phase transformations, as it 

applies in case of both one- and two-way shape memory effects. Having introduced a 

peridynamic model for a solid body made of SMA, quasi-static numerical calculations are 

performed to build a stress-strain characteristics. The reference for the obtained results is 

provided with the outcomes from finite element analyses. The modelling capabilities of 

peridynamics for SMA are discussed. 
 

1 INTRODUCTION 

Shape memory alloys (SMA), which are considered as a type of smart materials, provide 

unique and demanded physical properties that allow for many practical applications. In 

general, the specificity of SMA relates to thermomechanical phenomena present during solid 

phase transformations. SMA exhibit reversible crystal structure transformations that enable in 

macro scale [1]: (1) memorize one or two geometric shapes respectively via two-way 

martensitic phase transitions and (2) withstand extraordinary elastic deformation thanks to the 
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phenomenon of superelasticity (also called as pseudoelasticity). In the former case, thermal 

activation is carried out via heating and cooling an SMA sample. Going through the 

characteristic material properties, i.e. the temperatures determining when forward and 

backward martensitic phase transitions begin and finish, one or two different geometric 

shapes may be achieved by the sample (one- or two-way memory effect). The phase transition 

processes are spontaneous by their nature. It means that the intermediate shapes of thermally 

loaded SMA randomly and gradually evolve. However the demanded geometries appear 

eventually. Hysteretic character of martensitic phase transition is shown in Fig. 1. While 

temperature variation the contribution of both austenite and martensite phases in the whole 

body changes. 

 

Figure 1: Austenite contribution during reversible phase transition processes activated by the temperature 

change 

As shown in Fig. 1, four characteristic temperatures determine the conditions that have to 

be satisfied to activate and finish phase transformation processes, in both directions. The two 

pairs of parameters A�, A� and 	M�, 	M� respectively determine the temperatures when 

austenite and martensite phases are generated (indexes: s-start, f-finish). It is worth to be 

noted that the above mentioned temperatures depend on mechanical stresses – they increase in 

line with the stress growth. Different shapes of crystal structures for both phases (cubic 

structure for austenite, rhomboidal structure for martensite) allow for memorizing the 

geometric shapes while martensitic phase transitions. The case of one-way memory effect is 

illustrated in Fig 2. 

The following repeatable cycle applies for the one-way memory effect: (1) SMA structure 

deforms while mechanical load at constant temperature – martensite crystals evolve to their 
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deformed variant, (2) stress releases, however, the change of SMA shape is irreversible, (3) 

memorized shape is recovered while thermal load at zero stress, (4) cooling down leads to the 

initial state exhibiting undeformed martensite. 

 

Figure 2: One-way memory effect – application of thermal load is used to recover remembered shape 

The latter case of SMA behavior, i.e. superelasticity, reflects the fact that elastic 

deformations allowed in SMA are considerably high. The maximum strains for SMA exceed 

10%, which is much higher that the achievable values for other metallic materials, including 

copper, steel, aluminum and titanium, which is 1% at most. The phenomenon of 

superelasticity is explained in more detail in Section 2. 

Even though SMA have remained very popular for decades, there is still lack of widely 

accepted reliable models for this kind of smart materials. Indeed, the number of already 

published papers on SMA modeling is impressive, which does not solve the issue at all. 

Overview on the modeling tools can be found in [2]. One reason of the problem is that SMA 

are still under extensive experimental investigation. Not all phenomena present in SMA are 

completely studied yet. In consequence, there is still lack of knowledge regarding appropriate 

modeling techniques that should be used. One of the missing field for SMA that still needs 

further explanation is the influence of boundary conditions on the material behavior, 

especially on the course of phase transformation processes [3]. Relatively complicated 

physics, being still under gradual identification for SMA, requires continuous effort in 

developing new, more accurate and efficient modeling tools. The above statement reflects the 

second source of inconveniences during investigation of reliable SMA models, in turn. Based 

on the formed works described in [4-6] and  the model proposed by Lagoudas [7], the authors 

show in the present paper exemplary results for the approach proposed in [8], which 

successfully makes use of the theory of peridynamics to model superelasticity [9-11]. 

The present work consists of 5 sections. After introduction in Section 1, Section 2 provides  
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an overview on the phenomenon of superelasticity, including the Lagoudas analytical model 

[7]. Next, the peridynamic model for superelasticity in SMA is briefly introduced in Section 

3, followed by exemplary application results of the presented approach in Section 4. Section 5 

concludes the paper and provides the final conclusions.  

2 SUPERELASTICITY IN SMA – ANALYTICAL APPROACH   

Superelasticity is observed when force excitation is applied at constant temperature. 

Austenite should be considered as the initial phase, i.e. the ambient temperature should be 

greater than A�. The phenomenon of superelasticity may be explained by the already 

mentioned fact, that the characteristic temperatures of phase transitions increase while the 

stress growth, as illustrated in Fig. 3. Hence, purely mechanically imposed phase change 

(from austenite to martensite – marked with “1” in Fig. 3) allows to withstand significant 

strains due to both: (1) immediate appearance of deformed versions of rhomboidal structure in 

created martensite phase, and (2) lower value of elastic modulus (Young’s modulus) for 

martensite when compared with the respective property of austenite. 

 

Figure 3: Reversible behavior of SMA for superelasticity – full cycle deals with mechanical loading and 

unloading an SMA sample. 

The effect of superelasticity is reversible. Hence, after external loading is released 

martensite phase transforms back to austenite instantly. The stress-strain relationship for 

superelasticity is presented in Fig. 4. As shown, the stress-strain path exhibits hysteresis, 

which means dependency upon direction of transformation [12]. Moreover, a very interesting 

region of plateau is present during phase transformation processes – identified for both 

directions, when the percentage contribution of both phases changes. In this case the stress is 

kept at almost constant level for a relatively wide range of strain variation. In consequence, a 

mechanical device generating constant force within the assumed wide range of the stroke may 

be easily constructed based on SMA. 
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Figure 4: Stress-strain path for superelasticity – full cycle of mechanical loading and unloading an SMA sample. 

The unique behavior of SMA (including significant width of the hysteresis loop) allows for 

applications in damping systems [4,13]. Other commonly known field of application, which 

makes effective use of superelasticity, is medicine (dental braces and medical staples [14]). 

In the following analytical description of the phenomenon of superelasticity is briefly 

provided. After [7] the total specific Gibbs free energy �, i.e. the total Gibbs free energy per 

unit mass, for a polycrystalline SMA, constituting a mixture of both austenite and martensite 

phases, may be calculated with the formula 

���	, �, �, �	� � � 1
2� ����������� �

1
� ��������� � ���  �	 !   

 " #�� � ��� � �ln &���'( � )��  *�  
1
� +��� 

(1) 

where the arguments of the function � are: �, – second order Cauchy stress tensor, � – 

temperature, � – martensitic volume fraction and -.	  – second order transformation strain 

tensor. The quantities ��� and ��� stand for a symbolic description of the stress tensor �,, 
following the Einstein summation notation. Hereunder, this notation is used whenever 

required to unambiguously specify calculations for tensors. The real-valued parameter � is 

taken from the range bounded with the limits: 0 – used to declare pure austenite structure, and 

1 if martensite is the only existing phase in the modeled body. Furthermore: � – the mass 

density, ����� – fourth order elastic compliance tensor, ��� – second order thermal expansion 

coefficient tensor, �� – reference temperature, " - specific heat, )� – specific entropy at a 

reference state, *� – specific internal energy at the reference state, +��� – the transformation 

hardening function – elastic strain energy originating from the interactions between various 

variants of martensitic phase and the surrounding phase, including interactions within the 

martensitic phase. 

In case of the considered phenomenon of superelasticity, when temperature effect is not 

observed (i.e.: � � ��; isothermal phase transformation process initialized by mechanical 
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stresses only), Eq. (1) may be rewritten for a one-dimensional (1-D) case (uniaxial tension)  to 

the form 

���, �, �, -.� = − 12� ��0 − 1� �-. − )��� + *� + 1� +��� 
(2) 

where the parameter � is defined with reference to the inversions of the Young’s moduli for 

both phases, i.e. 12 and 13 

 � = ���� = �2 + ���3 − �2� = �2 + �4�, 5ℎ787: �2 = �12�:;,   �3 = �13�:; (3) 

 

The indexes < and = denote austenite and martensite phases respectively. All the resultant 

material parameters used in Eq. (2) are formulated based on the fraction � and the properties 

of the two phases coexisting in the model, similarly to the definition of � with Eq. (3). 

The total strain becomes - = ����� + >3 2⁄ A�  (4) A is the material property and stands for the maximum uniaxial transformation strain. 

Having introduced the second law of thermodynamics, to assure that entropy of the modeled 

body can never decrease, the Clausius-Planck inequality is accordingly formulated based on 

Eq. (2) in terms of thermodynamic force B  B�C ≥ 0 (5) 

The transformation hardening function +���, may be found using the formula [15] 

+��� = E12 �F3�0 + �G; + G0��,   �C > 012 �F2�0 + �G; − G0��,    �C < 0 

(6) 

where F2, F3, G;, G0 are the material properties found applying the Kuhn-Tucker conditions F2 = −Δ)��<K − <L� (7) 

F3 = −4)��=L − =K� (8) 

G; = 12 �4)��=L + <K� − �4*� (9) 

G0 = 14 �4)��<L − <K − =K − =L� (10) 

Finally, the thermodynamic force B takes the form 

B = 12 4��0 + �4)��� + B; 
(11) 
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where B; = E √6A� + �4)��=L − =K�� − 14 �4)��=L + <K + <L − =K�,   �C > 0
√6A� + �Δ)��<K − <L�� − 14 �4)��3=L + 3<K − <L + =K�,    �C < 0  

Based on the thermodynamic force B, transformation function Φ is introduced to define 

conditions when martensitic volume fraction � should change 

Φ = U B − V,   �C > 0 �austenite →   martensite�−B − V,   �C < 0 �martensite  →   austenite� 
(12) 

 Next, based on the value of Φ, and taking into account the condition (5), two cases apply 

when change of � is required: 

- when increasing stress �, if Φ��C > 0� > 0, then phase transformation from austenite to 

martensite is observed and further growth of � is required 

- when decreasing stress �, if Φ��C < 0� > 0, then phase transformation from martensite 

to austenite is observed and further reduction of � is required 

The parameter V is the critical value defying the quantity for internal dissipation while 

phase transformation 

V = 14 �4)��=L + =K − <K − <L� 
(13) 

Considering continuously verified conditions regarding transformation function (Φ ≤ 0 

satisfied at any time) and martensitic volume fraction (� ∈ [0,1]) the hysteretic characteristics 

for superelastic effect (Fig. 4) may be obtained while gradual increase and decrease of the 

introduced stress. 

3 SUPERELASTICITY IN SMA – PERIDYNAMIC MODEL 

The governing equation for a peridynamic model of a solid body takes the form [9] 

�*,.. = b +�*c − *, dc − d�efgh + Fi  

(14) 

where: � – mass density, *, *c, d, dc - displacements and position respectively for actual 

central particle and the particle, which is covered by the horizon A, + – pairwise function 

determining the interactions between particles, F - volumetric density of an external body 

force, efgh - portion of volume attached to a neighbouring particle. The function + introduces 

elastic properties of the modeled body. 

For a static 1-D numerical case Eq. (14) takes the following form for the j-the degree of 

freedom (DOF) 

k *� − *�l�|n| "o< + F�
p

�q:p�r�
 

(15) 

where:  n – the index of the neighboring particle, s – determines the horizon ratio (the radius 
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equals st, where t is the distance between particles, similarly 2s – the number of 

neighboring particles), < – cross-sectional area. The parameter " is the micromodulus 

function fund based on the geometric and elastic properties 

" = 212�st�0< 
(16) 

and the factor  o equals 

o = u1, n ≠ s ∧ n ≠ −s12 , n = s ∨ n = −s 

(17) 

In case of a uniform rod made of SMA, taking into account Eq. (4) – which is used to 

determine the total strain in SMA – the following resultant stiffness coefficient may be found 

[8] 

yz = y�{� + 1 
(18) 

where:  

y = 12<t  
(19) 

�{ = |1213 − 1} (20) 

Similarly, the resultant force is found 

~z = ~3�{� + 1 � 
(21) 

where:  ~3 = >3 2⁄ A12< (22) 

Finally, both yz  and ~z are used to formulate the system of linear equations created for all 

model DOFs based on peridynamic formulation (15). When solving a static or quasistatic 

problem for subsequent values of the external stretching force, the obtained system of linear 

equations is appropriately solved to find particle displacements. However, during each 

simulation step, the conditions regarding the transformation function and martensitic volume 

fraction, i.e. Φ ≤ 0 and � ∈ [0,1] must be checked to assure proper hysteretic behavior of 

modelled SMA. The next section provides an exemplary results of the peridynamic model of 

an SMA structure. 

4 NUMERICAL CASE STUDY 

A simple peridynamic model of a cantilever rod made of 5 particles is considered to 

confirm capability of the presented approach. The model, which is used to simulate the 

phenomenon of superelasticity is shown in Fig. 5. 
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Figure 5: A peridynamic model of an SMA rod used in simulations of the superelasticity effect. 

The material properties for SMA were set after [15]. They are collected in Table 1. Cross-

sectional area < � 1��0 whereas the distance between particles t � 10��. 

 

Table 1: Material properties for simulated SMA [15] 

Parameter Value 

13 30GPa 

12 70GPa 

=L 291K 

=K 271K 

<L 295K 

<K 315K 

�4)�2 -0.35MPa/K 

�4)�3 -0.35MPa/K 

A 5% 

�� 473K 

 

The stress-strain paths calculated based on the displacement *� for both peridynamic 

model and referential Finite Element (FE) model are shown in Figure 6. 

 

Figure 6: Stress-strain paths observed for the superelasticity effect. 
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The obtained results for peridynamics and FE method agree. In both cases considered 

conditions regarding the Clausius-Planck inequality lead to nonlinear material behavior, as 

demanded. As shown, the proposed implementation of SMA allows for modeling 

superelasticity effect properly. The external force � changes within sufficiently wide range of 

values to perform a full cycle for martensitic transition, i.e. the fraction � reaches its allowed 

bounds: 0 (pure austenite) and 1 (pure martensite).  

The presented model exhibits wide hysteresis loop that confirms SMA capability of 

dissipation of considerable amount of energy. The energy dissipated per a cycle corresponds 

to the area of the drawn hysteresis. This confirms applicability of SMA to dampers. 

5 SUMMARY AND CONCLUDING REMARKS 

SMA provide unique properties thanks to memory effects and superelasticity. Apart from 

the already mentioned medical applications, SMA constructions are also successfully applied 

in aerospace [16]. This fact continuously motivates to improve the quality of models of this 

type of smart materials. The presented results confirm effectiveness of the approach proposed 

for modeling superelasticity in SMA. The model makes use of a nonlocally formulated 

governing equation, i.e. via peridynamics. In contrast to FE method, peridynamics opens new 

possibilities of modelling material properties, especially in terms of nonlinearities, which 

applies in case of SMA. 

 

This work has been supported by the AGH University of Science and Technology, 

WIMiR, research grant no. 11.11.130.560. 
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