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Abstract. Wind energy is stochastic in nature; the prediction of aerodynamic quanti-
ties and loads relevant to wind energy applications involves modeling the interaction of
a range of physics over many scales for many different cases. These predictions require a
range of model fidelity, as predictive models that include the interaction of atmospheric
and wind turbine wake physics can take weeks to solve on institutional high performance
computing systems. In order to quantify the uncertainty in predictions of wind energy
quantities with multiple models, researchers at Sandia National Laboratories have applied
Multilevel-Multifidelity methods. A demonstration study was completed using simula-
tions of a NREL 5MW rotor in an atmospheric boundary layer with wake interaction.
The flow was simulated with two models of disparate fidelity; an actuator line wind plant
large-eddy scale model, Nalu, using several mesh resolutions in combination with a lower
fidelity model, OpenFAST. Uncertainties in the flow conditions and actuator forces were
propagated through the model using Monte Carlo sampling to estimate the velocity defect
in the wake and forces on the rotor. Coarse-mesh simulations were leveraged along with
the lower-fidelity flow model to reduce the variance of the estimator, and the resulting
Multilevel-Multifidelity strategy demonstrated a substantial improvement in estimator
efficiency compared to the standard Monte Carlo method.
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1 Introduction

Uncertainty Quantification (UQ) is critical in order to enable predictive numerical sim-
ulations for scientific discoveries and advanced engineering design, and is starting to be
part of wind industry engineering practices. However, in the presence of complex high-
fidelity simulations and a large number of uncertainty parameters, the computational cost
becomes prohibitive for conventional UQ methods, in both research and design applica-
tions. In recent years, multi fidelity UQ has been introduced in order to alleviate this
issue and it is based on the aggregation of several lower accuracy models with a handful of
higher fidelity computations. One method belonging to this class is the multilevel Monte
Carlo method (MLMC) [8, 7]. In the MLMC method the goal is to obtain a statistical
estimator based on the aggregation of evaluations of the quantity of interest (QoI) over
several mesh resolutions. MLMC takes advantage of the convergence of the determin-
istic scheme in order to build MC estimators that target the coarsest resolution levels
and all the subsequent discrepancies between adjacent resolutions. In addition, gener-
alized control variate approaches can also be used in the presence of different fidelities.
The combination of control variate and MLMC lead to Multilevel-Multifidelity estimators
(MLMF). To demonstrate the use of MLMF methods in quantifying uncertainty in wind
energy applications, we consider simulations of a NREL 5MW rotor in an atmospheric
boundary layer.

The flow is modeled with Nalu, a large eddy simulation code [3], which uses actuator
line models to represent the blades in the present study. The domain is taken to be
periodic to emulate the effects of wake interaction with the rotor. Uncertainties in the
flow conditions and actuator forces are propagated through the model using Monte Carlo
sampling to estimate the velocity defect in the wake and forces on the rotor. A lower
fidelity model was implemented, referred to as OpenFAST, which was used in combination
with coarse grid Nalu simulations to reduce the variance of the estimator.

2 Problem Description

In a typical wind farm, multiple wind turbines may be placed in multiple rows in order
to maintain a compact arrangement. The result of this arrangement is that the front rows
of turbines will create a wake from the oncoming wind that will propagate to the wind
turbines in back rows. The velocity deficit in these wakes tends to reduce the output
power from those turbines, and hence the net wind farm efficiency may be lower than
predicted from the nominal efficiency of a single turbine.

It is possible to use computational models to optimize the arrangement of wind tur-
bines to minimize the loss of efficiency from the wake effects. However, models that do
not consider variability in the operating conditions of the wind farm may lead to poor
wind farm configurations; an optimally designed wind farm under a single nominal set
of operating conditions offers no performance guarantees if the conditions deviate on any
given day. Even when the turbine is operating within ideal conditions, the generated
power is affected by turbulent fluctuations in the wind, changes in the wind shear and
veer, atmospheric conditions such as density and stability, and the wakes from other
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turbines. Within the turbine itself, there may be misalignment with the primary wind
direction, suboptimal blade pitch angles, and mis-tuned tolerances for the rotor and blade
controllers. Finally, computational models for wind farms often rely on low order models
that cannot capture all of the physics present in the system, and thus add model form
uncertainty to the design of such systems.

Uncertainty quantification (UQ) is necessary for treating variability in applications
where significant uncertainties are present. In wind energy applications, UQ provides the
ability to quantify the expected power output and associated variance from wind farms
in the face of the aforementioned uncertainties in operating conditions. UQ may also be
used to inform and optimize wind farm configurations that are robust to these variations
and may yield superior performance to configurations designed without taking variability
into account.

2.1 Computational Approach

As an example problem, we consider the case of a wind turbine in an atmospheric
boundary layer and attempt to evaluate the rotor power, thrust, and root-bending mo-
ments in the x- and y-directions. To simulate the wind turbine dynamics, we use the Open-
FAST software suite developed at the National Renewable Energy Laboratory (NREL) [5].
OpenFAST enables the analysis of complex physical and environment coupling, including
turbine controllers, elastic dynamics, and flow-structure interactions with actuator line
theory. We use the NREL 5-MW baseline wind turbine [2] as a prototpyical example
in our analysis; this is a single three-bladed turbine with rotor diameter 126m and hub
height 90m from the ground. The inflow wind for the aerodynamic analysis of the wind
turbine may be simulated in two different ways.

The first method is to leverage the multiphysics, massively parallel simulation code
Nalu [3]. Nalu is used to perform large eddy simulations (LES) of the atmospheric
boundary layer. Nalu solves the Navier-Stokes equations in the low-Mach number ap-
proximation with the one-equation, constant coefficient, turbulent kinetic energy model
for the subgrid scale stresses [4]. Following [1], the flow-structure interaction from the
turbine onto the wind is simulated by adding a body force of the form

fi =

∫ L

0

Fi(l)g(~r(l))dl (1)

where fi is the body force in the momentum equation, l is the distance along an actuator
line, Fi are forces computed from common modules of the OpenFAST code-base, and
g(~xl) is a smoothing kernel of the form

g(~r) =
1

π3/2ε3
exp

(
−|~r|

2

ε2

)
(2)

where ε is a characteristic length scale that may be tuned to spread the body forces out
over a larger volume. In the simulations performed in this study, ε was fixed at 10m. The
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Table 1: Cost estimates for Nalu and OpenFAST simulations.

Case Mesh size Simulation time CPUs Cost Cost
(seconds) (CPU-hours) (relative)

OpenFAST 500 1 0.42 1
Coarse 100x50x50 2000 80 240 576

Medium 200x100x100 2000 160 960 2304
Fine 400x200x200 2000 400 6860 16500

Reference 800x200x200 2000 400 38400 91400

simulation domain was taken to be [2km, 1km, 1km] in the x, y, and z directions, and the
wind turbine was placed in the center of the domain. The boundary layer was initialized
with a small perturbation in the velocity profile near the ground in order to accelerate
the development of turbulence. The domain was taken to be periodic, allowing the wake
from the turbine to interact with itself as an approximation to the effects of having many
wind turbines upstream.

The second method is to use the OpenFAST module Turbsim to generate realizations
of turbulence-like inflow wind combined with the AeroDYN module for solving the wind
turbine rotor flow field. This method is the lower fidelity modeling approach and is termed
OpenFAST in this paper, despite the use of some OpenFAST modules in the Nalu code.
The Kaimal spectrum was used in conjunction with a power-law boundary layer shape
to approximate the turbulent fluctuations near the turbine. This approach is not able to
capture the wake interaction effects, and would not be an accurate representation of the
turbulence or boundary layer structure.

Although the LES-based actuator line approach of Nalu is expected to be more accurate
than the OpenFAST approach, the computational cost associated with solving the filtered
Navier-Stokes equations on a large domain is substantially higher. Thus we compare the
costs of performing an LES on three separate meshes of increasing size against the cost
of using OpenFAST. The OpenFAST simulations were run on a single CPU for a total
simulation time of 500 seconds. Due to the wake interaction effects and domain size, the
Nalu simulations were given a simulation time of 2000 seconds to allow the turbulence to
become stationary.

Table 1 reports the relative simulation costs for running OpenFAST and for running
Nalu on four meshes of increasing resolution, referred to here as coarse, medium, fine,
and reference. The reference case is considered to be high resolution as it has a mesh size
comparable to the blade width of the turbine. The OpenFAST cost includes the amount
of time required to generate the inflow turbulence realization, but even with this cost, it
is orders of magnitude cheaper to run OpenFAST than even the coarse grid LES in Nalu.

3 Multilevel-Multifidelity Strategy

In this section we briefly describe the multilevel, control variate, and multilevel-multifidelity
(MLMF) sampling approaches adopted in this work. The main goal of all these strategies
is to leverage the computational efficiency of lower accuracy models in order to decrease
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the variance of sampling estimators based on a limited number of high-fidelity evaluations.
The sampling strategies adopted in this work are all based on the Monte Carlo (MC)

method. In the MC method the expected value E [Q] for a generic Quantity of Interest
(QoI) Q : Ξ→ R is approximated as

E [Q] =

∫
Ξ

Q(ξ)p(ξ) dξ ≈ Q̂MC
N =

1

N

N∑
i=1

Q(ξ(i)) =
1

N

N∑
i=1

Q(i), (3)

where N realizations of the vector of random input ξ ∈ Rd are drawn according to the
joint probability distribution p(ξ). For each realization of the vector of random input
variable ξ, the value of the QoI Q(i) = Q(ξi) is computed by solving the system of
PDEs describing the problem of interest, i.e. the Navier-Stokes equations for the high-
fidelity wind turbine model. As well known, the MC estimator is robust and reliable,
being unbiased and not affected by the dimensionality d. However, it exhibits a slow rate
of convergence. The root-mean-square-error (RMSE) scales linearly with the standard
deviation of Q and inversely proportional to N1/2. Therefore, in order to obtain accurate
numerical estimation it is usually required to evaluate a large number of realization of
Q(ξ).

A possible mitigation strategy to reduce the overall computational cost of the MC esti-
mator without sacrificing its accuracy is the so-called multilevel MC (MLMC) approach.
For a deep review of the method the interested reader can refer to [8]. Here we only
present the basic concept to discuss the numerical investigation conducted in this work.
The main idea of MLMC is to replace the QoI Q with a sequence of corrections with
respect to a coarser solution (for instance, coarser spatial mesh resolutions) applied to the
top of the coarsest solution. If we consider the highest resolution level QL we can write
QL = Q0 + (Q1 −Q0) + · · ·+ (QL −QL−1) and if we define

Y` =

{
Q` −Q`−1 for ` > 0

Q0 for ` = 0,
(4)

we can write more compactly QL =
∑L

`=0 Y`. The MLMC estimator is formulated by
re-writing E [QL], by exploiting the linearity of the expected value, as the sum of the
expected values Y` and adopting an independent MC estimator for them on each level `

Q̂MLMC
L =

L∑
`=0

1

N`

N∑̀
i=1

Y
(i)
` . (5)

The variance of this estimator is known analytically once the variances Var (Y`) are
estimated, and thus the sample allocation can be optimized in order to obtain a target
variance ε2 with a minimum total computational cost C =

∑L
`=0 C`N`, where the cost of

each realization of Y` is noted as C`. The resulting optimal allocation of samples per level
is given by:
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N` =
1

ε2

L∑
k=0

√
Var (Yk) Ck

√
Var (Y`)

C`
. (6)

As it can be seen from the previous equation the number of simulations for each level
is proportional to

√
Var (Y`) /C`. Therefore, for a sequence of levels for which Y` → 0 for

` → ∞, N` will decrease as well with `, i.e. the computational burden is redistributed
toward the less expensive coarser levels.

In this work we constrained our sample allocation with the maximum number of avail-
able simulations at the highest resolution, i.e. NL = Ntarget. Once Ntarget is known the
optimal allocation is built backward by using the sequence of ratios (these are independent
from the variance ε2)

τ`−1 =
N`

N`−1

=

√
Var (Y`)

C`

√
C`−1

Var (Y`−1)
, for ` = L, . . . , 1. (7)

In the presence of numerical models based on different physics, as in the present case
where LES are compared to potential flow computations, there is no guarantee that Y` → 0
for ` → 0, so it is reasonable to rely on a slightly different approach, namely the control
variate (CV). We briefly present a formulation in which the statistical properties of the
high- and low-fidelity model (HF and LF respectively) are estimated at the same time as
introduced in [10, 9]. Also, for an extension to multiple low-fidelity models, the reader
can refer to [12]. In the CV approach we can approximate the expected value of a QoI for
the high-fidelity model evaluated at the resolution level L (QHF

L ) by adding an unbiased
term based on low-fidelity properties to the standard MC estimator

E
[
QHF

L

]
≈ Q̂CV,HF

L,NHF
= Q̂MC,HF

L,NHF
+ α

(
Q̂MC,LF

L,NHF
− Q̂MC,LF

L,NLF

)
, (8)

where NLF = NHF + ∆LF = NHF(1 + r) and the additional LF evaluation ∆LF = rNHF

are drawn independently from the first set NHF. The values for α and the additional
parameter r > 0 are obtained by minimizing the overall computational cost under the

constraint of the variance of the estimator Var
(
Q̂MC,HF

L,NHF

)
being equal to ε2. We report

here the final result obtained through the optimization analytically from the optimality
conditions (see [6, 7] for further details):

NHF =
Var

(
QHF

L

)
ε2

(
1− r

r + 1
ρ2

)
and r = −1 +

√
CHF

CLF

ρ2

1− ρ2
, (9)

where ρ is the Pearson’s correlation coefficient between HF and LF and CHF and CLF the
computational cost of each HF and LF, respectively.

In this work we do not directly employ the CV approach to build a statistical estimator;
instead, we combine it with the MLMC approach in order to obtain the so called MLMF
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Table 2: Ranges for uniform distributions of the three uncertain variables considered in
this study.

Uncertainty Minimum Maxmimum
Speed 6.5 m/s 7.5 m/s

Density 0.97 kg/m3 1.19 kg/m3

Yaw -25o 25o

estimator. The MLMF estiamtor is obtained as follows. Initially the MLMC estimaor

is obtained as in Eq.(5) and afterward each MC term
1

N`

∑N`

i=1 Y
(i)
` for the corrections

is approximated by means of the CV estimator Eq.(8). The final result is similar to the
MLMC allocation

N` =
1

ε2

L∑
k=0

√
Var (Yk) Ck

1− ρ2
k

Λk

√
Var (Y`) (1− ρ2)

C`
, (10)

where Λ` = 1 − ρ2
`r`/(1 + r`) denotes the variance reduction obtained at each level ` by

the CV estimator with respect to the MC. For this estimator we can also compute the
ratios τ` similarly to Eq.(7) in order to build the optimal allocation constrained to the
maximum number of realizations at the highest level of resolution of the HF model.

4 Numerical Results

To demonstrate the effectiveness of the MLMF strategy for variance reduction, we
consider the case where the wind speed, air density, and yaw angle of the wind turbine
are uncertain. The assumed distributions are uniform with bounds given in Table 2.

100 samples each were taken of the coarse-grid LES and OpenFAST simulations (low
and high fidelity paired together for the control variate on Y0), 20 samples each were
taken of the medium- and coarse-grid LES (paired together for Y1), and 7 samples each
were taken of the fine- and medium-grids (paired together for Y2). Due to the cost of the
reference mesh, only one sample was taken to benchmark the performance of the other
samples, evaluated at the means of the three input random variables.

An snapshot from a fine mesh sample is shown in Figure 1. The wake resulting from
the turbine may be seen from the velocity deficit trailing the center of the domain, as well
as the extra turbulence production resulting from the flow-structure interaction. The pe-
riodic boundary conditions also cause the wake to re-enter the domain upstream, lowering
the wind speed at the turbine location when the wake reaches the turbine. Depending on
the initialization, turbine parameters, and turbulent fluctuations, the wake may instan-
taneously veer off in different directions as well. Changes in the turbine yaw angle also
cause the wake to change direction.

The following sections will describe the results of the sampling study for key quantities
of interest from the turbine operation. In particular, in Sec. 4.1 we analyze and discuss
the output of the simulations performed for all the models and the spatial discretizations.
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Figure 1: Instantaneous x-direction velocity (left) and turbulent kinetic energy (right) at
the z=90m plane for a fine grid sample.

In Sec. 4.2 we present the extrapolation of the performance of all the sampling estimators
for the QoIs. For the sake of brevity we present only the results for the power and thrust
QoIs. Results for the root bending moments (Mx and My) are comparable to Power and
Thrust, respectively.

4.1 Pilot Sample Results

In this section we consider the results of the deterministic realizations for both Nalu
and OpenFAST. In Figs. 2 and 3 we report the results for power and thrust both in their
absolute value for each resolution and their multilevel corrections Y` = Q` − Q`−1. It is
evident from both Figs. 2a and 3a that all the resolutions for Nalu predict values around
the nominal value obtained through a reference solution (higher spatial resolution) at
the nominal input parameter values. For all the QoI considered, the value computed by
OpenFAST is always higher (for power OpenFAST predicts a value almost 4 time larger
than Nalu). This is due to the fact that OpenFAST does not resolve the wake induction
effect and instead assumes a nominal inflow condition of higher velocity.

When the multilevel corrections are considered (see Figs. 2b and 3b) we observe the
expected behavior, i.e. the (mean) value of Y` is decreasing while increasing the level
` thanks to the convergence of the Nalu realizations. Also, it is worth noting that the
spread of the samples is decreasing while increasing `; therefore, it is reasonable to assume
that the variance of Y` is decreasing as well. This is confirmed from the evaluation of the
variance of Y` for all the QoIs, refer to Table 3.

The evaluation of the performance of the MLMF estimator also requires the estimation
of the correlation between Nalu and OpenFAST. In Table 4 we report the correlation
between Nalu and OpenFAST for level 0 and 1. Given a higher correlation between the
medium mesh results and OpenFast than between the coarse mesh resultsand OpenFast, in
the next section we also consider a two-level MLMC estimator and its MLMF counterpart.
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Figure 2: (a) Nalu and OpenFAST computed values for the power (in kW ). The nominal
value is computed with Nalu using a finer resolution mesh at nominal conditions for the
input parameters. (b) Multilevel corrections (Y` = Q` −Q`−1) for power.

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 20  40  60  80  100  120  140

Q
o

I 
V

a
lu

e

Simulation ID

Thrust

Nalu Coarse
Nalu Medium

Nalu Fine
OpenFAST

Nominal Value

(a)

-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10  20  30  40  50  60  70  80  90  100

C
o

rr
e

c
ti
o

n
 V

a
lu

e

Simulation ID

Thrust (ML Correction)

Y0
Y1
Y2

(b)

Figure 3: (a) Nalu and OpenFAST computed values for the thrust (in kN). The nominal
value is computed with Nalu using a fine resolution mesh at nominal conditions for the
input parameters. (b) Multilevel corrections (Y` = Q` −Q`−1) for thrust.

Table 3: Variance for the QoI and their ML corrections (Y` = Q`−Q`−1) per each level `.

Power Thrust
Level Q` Y` Q` Y`

0 1.5819e+04 5.5268e+02
1 5.1535e+03 3.7996e+03 2.6418e+02 9.2135e+01
2 5.7622e+03 506.038 2.2039e+02 13.281
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Table 4: Correlation squared between Nalu and OpenFAST.

QoI ρ2
0 ρ2

1

Power 0.27776 0.37157
Thrust 0.43889 0.62452

4.2 Estimator Performance Extrapolation

In this section, given the statistical properties estimated for power and thrust by prop-
agating uncertainties in Nalu and OpenFAST, we are able to extrapolate the behavior of
several estimators:

• Standard MC estimator;

• Multilevel Q0 + (Q1 −Q0) + (Q2 −Q1), namely MLMC-3l;

• Multilevel Q1 + (Q2 −Q1), namely MLMC-2l;

• MLMF based on MLMC-3l with CV for Q0, namely MLMF-3l;

• MLMF based on MLMC-2l with CV for Q1, namely MLMF-2l.

We extrapolate the optimal allocation profile for a higher number of Nalu fine-grid
simulations equal to 5, 10, 50, 100, 1000. For each estimator, once the optimal sample
profile has been computed, we also estimated its standard deviation as a measure of its
reliability. In Fig. 4 the standard deviation for each estimator is reported as function of
the equivalent number of HF realizations needed.
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Figure 4: Extrapolated performance for the MLMC/MLMF estimators for power (a) and
thrust (b)

For this problem, the most efficient estimator for both power and thrust is MLMF-2l
in which the Nalu coarse-grid simulations are neglected and the CV is introduced at the
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Table 5: Samples allocation for MLMC-3l and MLMF-3l.

Power Thrust
MLMC MLMF MLMC MLMF

Level Nalu Nalu OpenFAST Nalu Nalu OpenFAST
0 161 137 2040 181 136 2887
1 36 36 34 34
2 5 5 5 5

level ` = 1, i.e. the medium-grid. Overall, the efficiency of all the MLMC and MLMF
estimators is higher for the prediction of the thrust. As an example we report in Table
5 the sample allocation profile for both the QoIs. The sample allocation for MLMF-3l is
not altered at levels ` = 1, 2 but only at level ` = 0 where the CV is adopted. The sample
allocation is heavily shifted towards OpenFAST and more dramatically for thrust than
power given the higher correlation between the numerical codes for this latter QoI.

5 Conclusions

This study served as a demonstration of several estimators for a wind turbine applica-
tion. The performance of the estimators varied, with the MLMF approach requiring the
fewest equivalent samples for a given level of accuracy. These are preliminary results and
many improvements are in progress in the utilization of the physics models, OpenFAST
and Nalu.

It is anticipated that the uncertainty quantification approach used in this study will
be applied to the design optimization of wind plants that have robustness and reliability
requirements. Building toward this application, future studies will include problems with
a higher number of uncertain parameters, as there are many additional conditions that
are of interest in predicting the influence of atmospheric parameters on the performance
impacts of wind turbine wakes. To enable such studies, improvements are needed in the
coarse mesh resolution accuracy with respect to its relative cost as well as in the lower
fidelity model. The primary limitation of the lower fidelity model, OpenFAST, was that
it does not model the reduced velocity caused by the wind turbine wake. Reduced fidelity
models that include corrections or models for wake effects will be investigated in future
work, and are expected to significantly improve the correlation with the higher fidelity
model Nalu.
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