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Abstract. A finite element description of variable core edge dislocations in the context of linear 
elasticity is presented in this work. The approach followed is based on a thermal analogue and 
the integral representation of dislocations through stresses. The objective of a variable core 
defect concept is to eliminate the stress singularity experienced at the dislocation core. This is 
accomplished assuming that the displacement discontinuity is achieved gradually over some 
distance. To implement this concept in a finite element scheme, we first model purely rotational 
crystal defects considering an appropriate pseudo-temperature distribution, which produces a 
dislocation array of increasing width. Accordingly, we simulate a discrete edge dislocation of 
linearly increasing width. This description of dislocation core is closer to experimental 
observations and has a physically anticipated behaviour reproducing the Volterra dislocation 
away from the core. Further, interactions of variable core dislocations with free boundaries and 
coupled dislocation partials are investigated. In all cases, we recover the analytical solutions for 
the stress distributions and the total strain energy. 

1 INTRODUCTION 

Dislocations are line defects of the crystal lattice with well-documented structure and motion 
mechanisms. The understanding of dislocation mobility is essential in theories of plasticity, 
fatigue, and fracture. In the past, several relatively simple geometries have been studied 
analytically while complex configurations are nowadays tackled through fairly expensive 
computational schemes. The main reason for this is that the elastic fields of a single Volterra 
edge dislocation in classical elasticity break down at distances near the dislocation core and 
lead to 1r  singularities [1]. Such stress singularities result in logarithmic singularities for the 
total strain energy. Therefore, atomistic simulations are often used to model the phenomena 
near the dislocation core. 

In the context of classical linear elasticity, Lubarda and Markenscoff [2] have presented a 
variable core model (or disclinated dislocation model) that eliminates the stress singularity at 
the core. This is accomplished assuming that the displacement discontinuity is achieved 
gradually over some distance that corresponds to the dislocation core. Alternatively, the 
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variable core dislocation is modelled as a doublet of two wedge disclinations before the limit 
between them is taken to zero [3]. These rotational crystal defects are also important for the 
mechanical properties of materials while the disclination concept is convenient for modelling 
purposes [4, 5].  

In the present work we extend our methodology for the implementation of edge dislocations 
in finite elements [6-8]. As a first-step study, we consider a single wedge disclination lying in 
an infinite isotropic medium. This defect can be easily incorporated in this framework by 
selecting a suitable thermal distribution, which produces a dislocation array of increasing width. 
The derived full field results are in accordance with the theoretical expressions, provided by 
deWit [9].  

Accordingly, we implement the concept of an edge dislocation of variable width. The 
simplest displacement distribution is a linear increase along the positive y-axis. In a more 
general context any nonlinear increase of the displacement discontinuity may be also 
interesting. In dislocation theory, this variable displacement discontinuity represents a 
Somigliana dislocation. Moreover, this core description is closer to experimental observations 
[10]. Away from the core it has a physically anticipated behaviour reproducing the Volterra 
dislocation. The produced expression for the dislocation strain energy is bounded and thus can 
be used as a measure of convergence, which is not the case in the description of Volterra edge 
dislocations. Then, we study interactions of variable core dislocations in more complex 
configurations; a variable core dislocation near a free boundary, interaction of coupled 
dislocation partials in an infinite medium. In all cases, we recover the analytical results of Gars 
and Markenscoff [11] for the stress distributions and the total strain energy. Other attempts to 
eliminate dislocation singularities have been reported in the framework of generalized 
continuum theories [12, 13]. However, it is still unclear how these solutions can be implemented 
in numerical codes and whether they will be computationally more efficient than the present 
method. 

2 METHODOLOGY 

2.1 A discrete wedge disclination in an infinite domain 

We consider an elastic solid under plane strain conditions  0zz zy zx zy zx         . 

The components of the stress tensor ij  must obey the equilibrium conditions, which in a 

Cartesian coordinate system read as 

 0, 0,yx xy yyxx

x y x y

     
   

   
  (1) 

and the components of the linear strain tensor ij  must meet the local compatibility condition 

 
2 2 2

2 2
2 0 .yy xy xx

x yx y

    
  

  
  (2) 

In a simply connected region, the local compatibility condition (Eq. (2)) is sufficient to ensure 
continuity and single-valuedness of the displacement field. However, in multiply-connected 
domains, additional global compatibility conditions must be applied. As discussed by Mindlin 
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[14] these are expressed in the form of line integrals as  

 0, 0, 0.z x yd du du          (3) 

where 
1

2
y x

z

u u

x y

 
    

  is the rotation vector, and  ,x yu u  the displacement components. In 

general, it is not necessary physically that the displacement is single-valued in a multiply-
connected region, in which case translational and rotational defects are allowed as follows 

 , , .z z x x y yd du b du b           (4) 

The first condition in Eq. (4) describes a wedge disclination of Frank vector z  (Fig. 1) while 

the second and third give the two types of edge dislocations [1]. 

 

Figure 1: A hollow-core wedge disclination with Frank vector z . 

The conditions of Eq. (4) may be expressed as line integrals on the derivatives of the strain 
components, or employing the constitutive law, connect the discontinuities with stress 
components [15].  

Following our previous studies on the finite element analysis of dislocations [6-8], we utilize 
an auxiliary problem of an anisotropic thermoelastic medium with cubic symmetry along the x 
and y direction. Considering a thermal distribution  ,x y , the constitutive relations between 

strains and stresses are  

 
   

   

1 1
1 , ,

2

1
1 ,

xx xx xx yy x xy xy

yy yy xx yy y

E

E

         


       

        

       

  (5) 

where xa  and ya  are the thermal expansion coefficients in the x and y direction respectively. 

Using these constitutive expressions and expressing Michell’s conditions (Eq. (4)) in terms 
of stress components, we introduce a way to produce translational and rotational defects through 
appropriate thermal distribution schemes. After a few manipulations (see also [7]), Eq. (4) take 
the form 

Ωz

y

x
R
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 

   

1 ,
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z
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ds
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n s s n
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                     





 
 
 



 
 (6) 

where n and s are the normal and tangential vectors at any point of a closed contour that 
surrounds the defects.  

 

Figure 2: Thermal distribution for the implementation of a wedge disclination to finite elements. 

Next, we need to find appropriate thermal distributions to individually create discrete 
defects. The description of edge dislocations is provided in [7] whereas the plane wedge 
disclination is modeled as a dislocation array of increasing width. Indeed, the Frank vector is 
related to the Burgers vector as x zb y  . To implement this defect, we assume an orthogonal 

mesh where the element dimensions are xh  and yh  and assign the following distribution on a 

strip of nodes as shown in Fig. 2 
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 (7) 

This thermal variation produces a wedge disclination as follows 
 

  1 .z x xT h y      (8) 

It is noted that, according to Hirth and Lothe [1], disclinations are not met as discrete defects in 
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metal crystals since the induced displacement by these defects are unbounded at infinity.  

2.2 Variable core edge dislocations 

In order to eliminate the stress singularity that arises at the core of discrete edge dislocations, 
Lubarda and Markenscoff have introduced a variable core edge dislocation [2]. This model 
assumes that the displacement discontinuity xb  is achieved gradually over some distance ρ 

(core radius). The defect is essentially produced by the superposition of solutions for two wedge 
disclinations. A convenient thermal distribution for the implementation of this defect in finite 
elements is depicted in Fig. 3 and given as [7] 
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 (9) 

 

Figure 3: Thermal distribution for the implementation of a variable core edge dislocation into finite elements. 

The thermal distribution of Eq. (9) produces a dislocation array of increasing width in the 
region 0 y    for 0x  . 
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3 NUMERICAL EXAMPLES AND DISCUSSION 

In this section, we study various configurations where analytical solutions exist in order to 
examine the accuracy of the proposed methodology.  

3.1 Single wedge disclination in an infinite domain 

The first geometry studied is that of a discrete wedge disclination in an infinite domain. The 
defect is considered to lie along the y-axis, as described in Fig. 2. In the case of isotropic linear 
elastic materials, the full-field expressions for the stress components are given as [3, 9] 

 
   

   

2 2

2 2

2

ln , ln ,
2 1 1 2 2 1 1 2

, 2 ln ,
2 1 1 22 1

z z
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z z
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y x
r r

r r

xy
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r

   
     

    
   

    
              

          

 (10) 

where r is the radial distance from the origin and ν is the Poisson’s ratio. 

             

Figure 4: The normalized normal stress fields a) xx xb  and b) xy xb  for a wedge disclination in an infinite 

isotropic medium. The isocontours range is  0.10 0.10  Pa/m  . 

To model this defect a rectangular domain consisting of about 80,000 4-noded quadrilateral 
plane strain elements was created in ABAQUS [16]. In Table 1, the elastic constants of the 
material assigned in all problems are provided. It is noted that the thermal expansion 
coefficients are not the physical ones but take apparent values suitable for computations, since 
there is no actual temperature field in the problem. In Fig. 4 the numerical results for the normal 
stress xx  and the shear stress xy  are compared to the corresponding analytical solution (Eq. 

(10)). We observe that the numerical response (left part of each figure) practically coincides 
with the exact solution near the disclination tip and gradually deviates from it as we move closer 
to the edge of the analysis domain. The produced response is overall satisfying showing the 
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robustness of the method. 

Table 1: Elastic constants of tungsten [1]. 

Crystal 
c11 

(1010 Pa) 
c12 

(1010 Pa) 
c44 

(1010 Pa) 
H 

(1010 Pa) 
A 

μ 

(1010 Pa) 
Ε 

(1010 Pa) 
ν 

W 52.10 20.10 16.00 0.00 1.00 16.00 38.97 0.218 

3.2 Discrete edge variable core dislocation in an infinite domain 

Next, we examine a variable core edge dislocation lying in an infinite linear elastic isotropic 
domain. The expression for the shear stress along the x-axis is written as [17] 

     2 2
,0 .

2 1
x

xy

b x
x

x




  
 

 
 (11) 

Accordingly, the total strain energy within a large radius R around the center of the defect is 
[17] 

    
2 1 2

, ln .
4 1 2

xb e R
E R




  
 

    
 (12) 

             

Figure 5: a) Comparison of numerical results with analytical solution for the variation of shear stress xy  for an 

edge dislocation of different variable cores. b) Normalized strain energy variation for various core radii ρ. 

To study numerically this configuration, we use the same rectangular mesh as before 
consisting of about 80,000 quadrilateral plane strain elements without any special refinement 
in the core region. Using a thermal distribution as shown in Fig. 3, we model discrete variable 
core dislocations of different core radii. The numerical results for the shear stress along the x-
axis are compared to the exact solution in Fig. 5a. It is clear that the numerical prediction is in 
good agreement with the theoretical prediction and the stress field is bounded in all cases. 
Further, it is observed that as the variable core becomes smaller, the maximum stress is 
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increased and the overall behaviour approaches that of a Volterra edge dislocation. On the other 
hand, as the variable core length increases (soft metals), the peak stress reported is lower.  

Moreover, the total strain energy for dislocations of various core lengths is plotted in Fig. 
5b, where  2 1     . The trend observed in this graph is that the total strain energy is 

reduced as the variable core length increases. The numerical solution reproduces this response 
although a constant mismatch from the analytical prediction is noted. In Eq. (12), it is shown 
that the exact result for the total strain energy depends on the domain of calculation (value of 
radius R). In the finite element implementation of the problem, the contour that surrounds the 
defect is not a perfect circle since the mesh created is rectangular. Hence, the total strain energy 
was underestimated by a constant error of ~2%.  

3.3 Discrete (single) edge variable core dislocation near a free surface  

An extension of the problem studied in the previous section is to consider a variable core 
dislocation lying at a distance h from a free surface, as shown in Fig. 6.  

 

Figure 6: Geometry of a variable core edge dislocation near a free surface. 

The shear stress in the glide plane is obtained through superposition of the stress field 
induced by a variable core dislocation in an infinite domain and a correction field in order to 
satisfy the boundary conditions at the half-space as follows [11] 

 

     

 
 
  

 
  

22

2 2 2 2 32 2 22 2

,0 ,0 ,0

4 3 16 2
.

2 2 2

fs
xy xy xy

x
x

x x x

h h x h h xb x x
b

x x h x h x h

  

 


   

  

 
               

 (13) 

The total strain energy in this configuration is given as  

    
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 (14) 

We note that Eq. (14) is not dependent on any integration radius R. 
To analyze numerically this geometry, a mesh of 68,000 quadrilateral plane strain elements 

was prepared without any refinement near the core or near the free surface. First, defects of 
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different core widths were placed at a same distance from the free surface, 10 xh b . The results 

for the stress distribution along the glide plane are reported in Fig. 7a. For the selected distance 
from the free surface, the results show only a small deviation from the infinite medium case 
(Fig. 5a). The differences are more noticeable as the defect approaches the free surface  0h   

while the infinite medium solution is recovered as h  .  

             

Figure 7: a) Comparison of the shear stress variation predicted by the proposed methodology to the analytical 
solution for dislocations of different core radii ρ lying at a distance 10 xh b  in tungsten. b) Normalized strain 

energy variation for different core lengths ρ and distances from the free surface h. 

Then, the total strain energy is calculated for four different core lengths and various distances 
from the free surface (Fig. 7b). Overall, the numerical results match very well with the 
analytical solution. The total strain energy is minimum when the defect is placed close to the 
free surface and increases monotonically as the distance h becomes larger approaching 
asymptotically the corresponding solution for infinite medium as h   (see Fig. 5b).  

3.4 Dissociated edge variable core dislocation in an infinite domain 

The last geometry investigated assumes two variable core dislocation partials separated by 
a distance 2  lying in an isotropic infinite medium (Fig. 8). In general, the two partials may 
have both edge and screw components, have different Burgers vectors and core radii. The 
general solution of this problem is provided in [11]. For simplicity, we initially consider two 
partials having only edge components, with    1 2

x x xb b b   and    1 2    . In this case, the 
shear stress along the glide plane is given as 
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Also, the total strain energy reads as 
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where sE  is the energy of a single dislocation, iE  is the interaction energy of the two partials, 

and sfE  is the stacking fault energy where 2500 mJ m   for tungsten [18]. We note that the 

total strain energy is dependent on an integration radius R.  

 

Figure 8: A dissociated variable core edge dislocation in an isotropic infinite medium. 

             

Figure 9: a) Shear stress distributions xy  for a) various core radii  1 2   and a dissociation distance 

2 10 xb , b) various core ratios     1 2   and dissociation distance 2 . 
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quadrilateral plane strain elements is used. Both defects are implemented based on the thermal 
distribution of Eq. (9) and Fig. 3. In Fig. 9, the shear stress distribution along the glide plane is 
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observed that the maximum shear stress diminishes as the core radius is increased. In addition, 
we investigate the problem for dislocation partials that have different core lengths     1 2   

and various dissociations distances. In this case, the analytical expression is obtained through 
superposition of Eq. (15) for the two defects. The results of this investigation are given in Fig. 
9b. It is shown that as the dissociation distance decreases, the maximum shear stress increases, 
when the core radii are kept constant. As 0 , the response obtained is that of a single 
variable core dislocation in infinite medium (Fig. 5a). In all cases, the exact solution is very 
well recovered from the numerical method.  

 

Figure 10: Normalized strain energy variation for different core ratios    1 2   and dissociation distance 2 . 

Further, the total strain energy was calculated for the same pair of different core partials and 
various dissociation distances (Fig. 10). We observe that the total strain energy decreases as the 
dissociation distance increases until a bounded minimum is reached for 3 xb  . Then, the 

stacking fault energy term becomes dominant over the other two terms of Eq. (16) so that the 
total strain energy monotonically increases as the dissociation distance of the partials becomes 
larger. Also, the response is augmented as the core radii ratio    1 2   increases. 

4 CONCLUDING REMARKS 

In this study a finite element approach to analyze disclinations and variable core dislocations 
was presented. The approach followed is based on the implementation of a thermoelastic 
problem. The applications investigated were restricted to isotropic cases as the objective was to 
benchmark the method against known analytical solutions. However, the scheme can be readily 
extended to study anisotropic crystals.  

In all cases, the elastic fields produced by the finite element method were in good accordance 
with the theoretical expressions of and the maximum stress values are verified. The results of 
this work are expected to be useful in the analysis of plastic yield strength, giving quantitative 
results regarding the influence of thin film constraints and dislocation partials interaction. 
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