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Xavier Álvarez1, Andrey Gorobets2 and F. Xavier Trias1

1 Heat and Mass Transfer Technological Center, Technical University of Catalonia
C/ Colom 11, Terrassa (Barcelona), 08222, Spain

2 Keldysh Institute of Applied Mathematics RAS
Miusskaya Sq. 4, Moscow, 125047, Russia

Key words: Parallel CFD, SpMV, Portability, MPI + OpenMP + OpenCL, Hybrid
CPU + GPU, Heterogeneous computing

Abstract. Massively-parallel devices of various architectures are being adopted by the
newest supercomputers to overcome the actual power constraint in the context of the
exascale challenge. This progress leads to an increasing hybridisation of HPC systems
and makes the design of computing applications a rather complex problem. Therefore,
the software efficiency and portability are of crucial importance. In this context of accel-
erated innovation, we developed the HPC2 (Heterogeneous Portable Code for HPC). It
is a portable, algebra-based framework for heterogeneous computing with many potential
applications in the fields of computational physics and mathematics, such as modelling
of incompressible turbulent flows. In its application to CFD, the algorithm of the time-
integration phase relies on a reduced set of only three algebraic operations: the sparse
matrix-vector product, the linear combination of vectors and the dot product. This
algebraic approach combined with a multilevel MPI+OpenMP+OpenCL parallelisation
naturally provides modularity and portability. In this work, we present the strategies for
the efficient heterogeneous execution of large-scale simulations on hybrid supercomput-
ers that are part of the HPC2 core. The performance is studied in detail for the major
computing kernel, the sparse matrix-vector product, using a sparse matrix derived from
a simulation on a hybrid unstructured mesh and up to 32 nodes of a hybrid CPU+GPU
supercomputer.

1 INTRODUCTION

Continuous enhancement in hardware technologies enables scientific computing to ad-
vance incessantly to reach further aims. After hitting petascale speeds in 2008, sev-
eral organisations and institutions began the well-known global race for exascale high-
performance computing (HPC). Thenceforth, hardware developers have been facing two
significant challenges. Firstly, the energy efficiency of the exascale systems ought to be
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augmented by two orders of magnitude respect to the earliest petascale machines. Sec-
ondly, the memory bandwidth must be increased to satisfy the demands of the scientific
computing community. The common FLOP-oriented architectures (i.e. very high, and
growing FLOPS to memory bandwidth ratios) are not efficiently dealing with most of the
algorithms used in scientific computing; they barely reach 3% of their peak performance
as shown in the HPCG Benchmark [1].

In consequence, massively-parallel devices of various architectures are being incorpo-
rated into the newest supercomputers. This progress leads to an increasing hybridisation
of HPC systems and makes the design of computing applications a rather complex prob-
lem. The computing operations that form the algorithms, the so-called kernels, must be
compatible with distributed- and shared-memory SIMD and MIMD parallelism and, more
importantly, with stream processing (SP), which is a more restrictive parallel paradigm.
Initially, the GPU-only implementations proved to be more energy efficient than the
CPU-only did [2], even though they let the majority of CPU cores on the hybrid nodes to
remain idle. Heterogeneous implementations rapidly became popular since they can tar-
get a wide range of architectures and combine different kinds of parallelism, engaging all
the computing hardware available on the node. For instance, the MPI+OpenMP+CUDA
implementation in [3] provides high scalability on up to 1024 hybrid nodes. However, only
depending on the proprietary NVIDIA CUDA framework for handling GPUs leads to a
loss of portability while, considering the enormous complexity of porting existing codes,
the software efficiency and portability is of crucial importance. Therefore, fully-portable
implementations such as the MPI+OpenMP+OpenCL in [4] are preferred in this work.

In this context of accelerated innovation, making an effort to design modular applica-
tions composed of a reduced number of independent and well-defined code blocks is worth
it. On the one hand, this helps to reduce the generation of errors and facilitates debug-
ging. On the other hand, modular applications are user-friendly and more comfortable
for porting to new architectures (the fewer the kernels of an application, the easier it is
to provide portability). Furthermore, if the majority of kernels represent linear algebra
operations, then standard optimised libraries (e.g. ATLAS, clBLAST) or specific in-house
implementations can be used and easily switched.

Nevertheless, the design of modular frameworks requires a long-term, global strategy
to ensure that the pieces fit correctly. If you take a look at the studies in numerical
methods that mimic the properties of the underlying physical and mathematical models,
most of them use an operator-based formulation because of its power to analyse and con-
struct accurate discretisations [5, 6]. Such a formulation encouraged Oyarzun et al. [7]
to implement an algebra-based CFD algorithm for simulation of incompressible turbu-
lent flows. Roughly, the approach consists in replacing traditional stencil data structures
and sweeps by algebraic data structures and kernels. As a result, the algorithm of the
time-integration phase relies on a reduced set of only three basic algebraic operations:
the sparse matrix-vector product, the linear combination of vectors and the dot product.
Consequently, this approach combined with a multilevel MPI+OpenMP+OpenCL par-
allelisation naturally provides modularity and portability. Furthermore, in our previous
work, we generalised the concept of the framework to extend its applications beyond CFD;
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we presented in [8] the HPC2 (Heterogeneous Portable Code for HPC), a fully-portable,
algebra-based framework with many potential applications in the fields of computational
physics and mathematics.

The most time-consuming operation in our framework is the sparse matrix-vector prod-
uct (SpMV), which represents up to 80% of the computational time of simulation as shown
in [7]. It widely receives much attention because it is prevalent and even essential in many
computing applications. Significant effort has been made in many works to adapt sparse
matrix storage formats for different architectures and matrix properties. For instance,
see [9, 10, 11, 12]. This key operation is a bottleneck in scientific computing because it
is a memory-bounded operation with a very low arithmetic intensity and it leads to indi-
rect memory accesses with unavoidable cache misses. Additionally, it is very challenging
in parallel computing because it may involve both inter- and intra-node data exchanges
as a result of the domain decomposition approach. Thus, hiding this expensive com-
munication overhead behind the computations is critical. The benefits of the overlap of
communications and computations on GPUs for the SpMV are demonstrated in [13]. The
heterogeneous execution of the SpMV on hybrid CPU+GPU systems is studied in [14],
showing a notable gain; notwithstanding, that study is restricted to a single node with a
single NVIDIA GPU.

In this work, we present the strategies for the efficient heterogeneous execution of
large-scale simulations on hybrid supercomputers that are part of the HPC2 core. Firstly,
the multilevel domain decomposition is proposed as the optimal method for distributing
the workload across the HPC system. Secondly, both the multithreaded simple and
double overlap execution diagrams are described. Finally, the heterogeneous performance
is studied in detail for the major computing kernel, the SpMV, using a sparse matrix
derived from a simulation on a hybrid unstructured mesh and up to 32 nodes of a hybrid
CPU+GPU supercomputer.

2 STRATEGIES FOR EFFICIENT HETEROGENEOUS COMPUTING

The HPC2 is a fully-portable, algebra-based framework with many potential applica-
tions in the fields of computational physics and mathematics. Details about its application
to CFD can be found in [8]. The simulations are to be executed on a hybrid HPC system
that consists of multiple computing nodes interconnected via a communication infras-
tructure. Hence, the optimal distribution of the workload across the system is of great
importance for attaining maximum performance. In our framework, a single MPI process
is assigned to each hybrid node. The workload distribution is fulfilled with a multilevel
domain decomposition. Hence, the MPI processes must handle the computing hardware
through OpenMP parallel regions and multiple OpenCL queues. Both the multithreaded
simple and double overlap execution diagrams are described to that end.

2.1 The role of the SpMV in large-scale simulations

Large sparse matrices often appear when numerically solving partial differential equa-
tions. Hence, the sparse matrix-vector product (SpMV) is a widespread operation in the

3
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scientific computing community. The sparse pattern of a matrix (i.e. the distribution
of the non-zero coefficients) typically arises from the spatial discretisation of a computa-
tional domain. The discretised domain is a finite set of objects in which some pairs are in
some sense related (such as mesh nodes, cells, faces, vertices, etc.). The couplings of an
element (represented by the non-zero coefficients within its row) depend on the numerical
method utilised.

In our algebra-based approach, the SpMV kernel represents the 80% of the compu-
tational cost. In addition, this key operation is the only one among the three of the
HPC2 that requires data exchanges as a result of the domain decomposition approach.
That is, the other two kernels are independent of the workload distribution. Therefore,
we will only focus on the heterogeneous implementation of the SpMV from now on, con-
sidering that the one of the axpy and dot is straightforward.

2.2 First-level decomposition for distributed-memory parallelisation

By way of example, let us consider the generic discretised computational domain in
Figure 1 (left). The first-level domain decomposition distributes the workload among the
computing nodes (i.e. the MPI processes). In doing so, the elements of the discretised
domain are assigned to subdomains using a partitioning library (e.g. ParMETIS [15])
that fulfils the requested load balancing and minimises the number of couplings between
cells of different subdomains. As a result, the first-level decomposition classifies subdo-
main elements into inner and interface categories as shown in Figure 1 (right). Namely,
interface elements are those coupled with elements from other subdomains. Consequently,
those other’s adjacent elements form a halo. A communication between parallel processes
is required to update the halo before a kernel processes the interface.

Inner HaloInterface

Computational domain Subdomain 1 Subdomain 2

Figure 1: Representation of a generic discretised domain (left). First-level decomposition of the domain
among two MPI processes (right).

2.3 Second-level decomposition for intra-node parallelisation

First-level subdomains are decomposed further to distribute the workload of each MPI
process among its computing hardware, such as multiple CPUs (called host) and co-
processors of different kinds (called devices). This second-level decomposition must con-
form to the actual performance of the hardware for the sake of load balancing. We propose
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in Figure 2 two different decomposition strategies of the same first-level subdomains. On
the left side, we aim at minimising the number of couplings. On the right, we isolate
the devices from the external communications. In this case, the host partition takes the
whole first-level interface plus a set of inner nodes. As a result, at the second level, the
interface and halo elements are classified as (1) external ones coupled with other sub-
domains of the first-level decomposition (grey-coloured), and (2) internal ones that only
participate in the intra-node exchanges (yellow-coloured).

The multilevel decomposition reduces the volume of the external communications sev-
eral times since only the interface of the first-level decomposition (grey-coloured) remains
external. Put another way; if the workload were initially distributed with flat domain
decomposition by assigning one MPI process to each device, the partitions would not be
aware of which devices are located on the same nodes. Therefore, the whole interface of
each subdomain would be involved in external communications. We do not recommend it
because the external interface assigned to a device with a separate memory space requires
a more expensive multistage device → host → MPI → host → device communication.

Host

Host

D1

D2D1

HostHost

D1

D2

D1

Subdomain 1 Subdomain 2 Subdomain 1 Subdomain 2

Inner Exterior Halo Exterior Interface Interior Interface Interior Halo

Figure 2: Two different strategies for the second-level decomposition. Minimising the number of cou-
plings (left), isolating the devices from the external communications (right).

2.4 Multithreaded overlap strategies

The heterogeneous execution of the SpMV leads to many different data-management
and computing operations because the complex multistage halo update must be con-
cluded before computing the interface elements. This multistage update is an expensive
operation that can critically affect the performance and scalability. Therefore, efficient
strategies are required for minimising the overhead of the communications. We describe
hereafter both the multithreaded simple and double overlap execution diagrams. Essen-
tially, this execution aims at simultaneously handling operations and communications of
both host and device through OpenMP parallel regions and multiple OpenCL queues.

For a better understanding of the overlap diagrams in Figure 3, and also for timing
purposes, we compressed all the operations involved in the SpMV into five distinct blocks
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(outlined in Table 1). The host blocks (white-coloured) are blocking tasks in the sense
that the assigned OpenMP threads must finish them before proceeding. In contrast,
the device blocks (grey-coloured) are non-blocking; that is, the assigned OpenMP thread
only submits the task to an OpenCL queue, then continues with the following. In D2H
and H2D blocks, the use of mapped, pinned-memory OpenCL intermediate buffers is
necessary; such pinned buffers are needed for DMA transfers, which can be overlapped
with computations.

Table 1: Description of the operational blocks composing the execution diagrams in Figure 3.

Block Description Timer
INN The SpMV kernel is launched only for the inner elements.

The inner domain can be overlapped with the halo update
because it is not coupled with the halo.

tinn

D2H Device-to-host download. Both the device’s internal and
external interface data is packed into intermediate buffers,
then copied to host.

td2h

MPI Inter-node exchanges. The send messages are posted with
point-to-point, non-blocking MPI Isend calls, and receive
messages with MPI Irecv for the incoming data. Finally,
MPI Waitall is used for synchronisation.

tmpi

H2D Host-to-device upload. Both the device’s internal and ex-
ternal halo data is packed into intermediate buffers, then
copied to the device.

th2d

IFC The SpMV kernel is launched only for the interface ele-
ments as soon as the halo update is completed. In the end,
a synchronisation barrier is included for host and devices.

tifc

The simple overlap diagram is shown in Figure 3 (left). In this mode, the halo update is
overlapped with the INN and IFC blocks. Two threads are created in the outer OpenMP
region: one for host computations and another for managing the device’s OpenCL queues.
The device’s outer thread spawns an OpenMP nested region with as many threads as
devices (thd). The host thread executes the host computations within an OpenMP nested
region engaging those threads still available (thh). In this simple overlap method, the
devices are involved in external communications. Hence, the H2D block must start right
after the MPI synchronisation. Assuming that all devices perform equal, the overall
computational time of the simple overlap can be estimated as

tsov = max(th
inn, (td

inn + td2h + tmpi)) + max(th
ifc, (th2d + td

ifc)). (1)

Thus, since the time depends on the maximum values in between different blocks, a proper
load balancing becomes very important.

The double overlap diagram is shown in Figure 3 (right). The main difference is that,
in this case, the external MPI communications are performed simultaneously with the
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internal D2H and H2D exchanges. To do so, the second-level decomposition must have
isolated the devices from the external interface as shown in Figure 2 (right). This way,
the MPI block becomes independent of the D2H, and consequently, H2D is independent of
MPI. Nevertheless, host IFC is bigger in this case. Hence, the double overlap is beneficial
only if the host computations are faster than the internal communications. The overall
computational time of the double overlap can be estimated as

tdov = max(th
inn, max(tmpi, (td

inn + td2h + th2d))) + max(th
ifc, td

ifc). (2)

Besides, the synchronous execution scheme may be relevant for test and comparisons.
It is not shown in Figure 3 due to its simplicity. Essentially, the idea is to complete the
halo update first, then proceed with computations. The overall computational time of
the synchronous mode is straightforward:

tsyc = td2h + tmpi + td2h + tinn + tifc. (3)

Simple Overlap Double Overlap

MPI

OpenMP nested [th
d
]OpenMP nested [th

h
]

OpenMP nested [th
d
]OpenMP nested [th

h
]

OpenMP parallel [2]

barrier

INN

IFC
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D2H D2H
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D2H D2H
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Figure 3: Multithreaded execution diagrams for simple overlap (left), double overlap (right). The
white-coloured blocks correspond to host; the grey-coloured ones correspond to devices.

3 HETEROGENEOUS PERFORMANCE STUDY

The sparse matrix used in this study is derived from a symmetry-preserving discretisa-
tion [5] on an unstructured hex-dominant mesh with approximately 10M cells. Therefore,
the majority of rows hold seven non-zero coefficients. The adapted block-transposed ver-
sion of ELLPACK sparse storage format [9] is used for the study. This format provides a
uniform aligned memory access with coalescing of memory transactions.
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The benefits of the heterogeneous CPU+GPU execution of the SpMV are measured
on the Lomonosov-2 hybrid supercomputer. Its nodes are equipped with a 14-core Intel
E5-2697v3 CPU and an NVIDIA Tesla K40M GPU. The performance comparison for the
CPU-only, GPU-only and heterogeneous executions on a single node is shown in Figure 4.
The heterogeneous mode shows a gain of 32% compared to the GPU-only mode, which
corresponds to a 98% of heterogeneous efficiency compared to the sum of the performance
of the CPU-only and the GPU-only modes.
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Figure 4: Single-node performance comparison for CPU-only, GPU-only and heterogeneous modes.

The strong scalability results in Figure 5 show that the simple overlap strategy pre-
sented in this work notably improves the performance by hiding the communications.
However, the scalability decays faster in the heterogeneous mode compared to the GPU-
only mode. This leak occurs because in the former, the computational load per GPU is
smaller and the communication load is higher than of the latter. Besides, in the heteroge-
neous mode, the CPU is loaded with computations which may interfere with MPI library
routines. Therefore, the overlapping operational range gets reduced.

Finally, the sustained performance for the different execution modes is shown in Fig-
ure 6. It can be seen that despite a little weaker scalability, the heterogeneous mode
outperforms the GPU-only mode. However, this advantage decays again with the number
of nodes because the CPU increasingly gets more involved in communications and the
load per GPU decreases.
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Figure 5: Strong scalability study of the SpMV for different execution modes.
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Figure 6: Performance comparison of the SpMV for different execution modes.

4 CONCLUSIONS

An algebra-based framework with a heterogeneous MPI+OpenMP+OpenCL imple-
mentation has been presented. This approach naturally provides modularity and porta-
bility; it can target a wide range of architectures and combine different kinds of parallelism,
engaging all the computing hardware available on the node. Considering the increasing
hybridisation of HPC systems, this appears to be very relevant.
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The strong scalability study shows that the benefit of the heterogeneous execution of
the SpMV decreases with the number of nodes. Therefore, to efficiently run heterogeneous
large-scale simulations, the load per device must be enough to guarantee the adequate
performance of the devices and the sufficient contribution of the host. Heterogeneous
performance studies must be carried out to determine the optimal workload distribution.
To that end, our algebra-based framework appears to suit very well since a single kernel
(the SpMV) is a key representative of the overall performance.
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