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Abstract. The effective viscosity in the Brinkman filtration equation is determined by 

a numerical simulation. The porous medium is modelled by a bundle of parallel fibers 

arranged in a regular square array. In the first step, in order to determine the permeability, the 

flow driven by the pressure gradient in an unbounded porous medium is considered. The flow 

is longitudinal with respect to fibers. In the second step, to determine the effective viscosity, 

the Poisseulle flow in a flat layer of porous medium is considered. Comparison of the 

tangential stress allows to determine the effective viscosity in filtration equation. In the third 

step, to determine the length of the area where the Brinkman equation is applicable, the flow 

through a porous medium connected with a pure fluid region is considered The Trefftz 

method with the special purpose Trefftz functions is applied in numerical simulations. 

1 INTRODUCTION 

In the surrounding of a boundary of a porous region with a high porosity adjacent to the 

free flow area, two modeling methods are known. In the first method, the Darcy filtration 

equation is used to incompressible fluid flow in porous region  

 
q

k
P

µ−=∇
 (1) 

where q is the macroscopic velocity, P is the pressure, µ  is the dynamic viscosity of the fluid, 

k is the permeability of the porous medium. In the free flow area the Navier - Stokes 

equations are used. The Beavers - Joseph boundary condition is applied for the tangent 

component of the velocity vector between this regions [1]. In such modeling a slip constant in 

the boundary condition appears. In paper [1] this constant was determined in a physical 

experiment, however, in some papers this constant is determined in the numerical experiment. 

In the second modeling method, the Brinkman filtration equation [2] is used for a porous 

medium with very high porosity in the presence of a free fluid region, or for a wall-bounded 

porous medium 
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where µ~  is the effective viscosity of the porous medium. As a matter of fact, this is the 

Stokes equation for creeping flow with the Darcy resistant term. In contrast to Darcy’s 

equation, Eq. (2) includes the term related to the viscous transfer of momentum. The 

continuity of the filtration and the free flow velocity is assumed at the contact boundary of the 

considered areas [2]. In this modeling case, an effective viscosity in the Brinkman equation 

appears. Almost all authors using the Brinkman equation have supposed that the effective 

viscosity µ~  is equal to the viscosity μ of a pure fluid. However, there are some papers in 

which this viscosity is determined by numerical simulation [3].  

The Beavers-Joseph boundary condition appiers in the firs method can be deduced as 

a consequence of what is now commonly called the Brinkman equation. In the problem of 

flow in a channel bounded by a thick porous wall one gets the same solution with the 

Brinkman equation as with the Darcy equation together with the Beavers-Joseph condition, 

provided that one identifies the constant α in this condition as µµ~ . In this way, 

experimental or computational data for the constant α can be used for determination of the 

effective viscosity.  

 
Figure 1. Porous medium with very high porosity region in the presence of free fluid region between two 

impermeable walls. 

In this paper, a combination of these two modeling approaches is proposed. For this 

purpose, it is assumed that in the porous area with high porosity there is a layer near the 

boundary in which the flow is governed by the Brinkman filtration equation (2), while in the 

rest of the area the flow is governed by the Darcy filtration equation (1). Then we consider 

three subareas. At the boundaries the continuity of the velocity vector is assumed. The 

problem in such a modeling is connected with the width of this layer l2 and with the unknown 

effective viscosity µ~ . To demonstrating of the proposed new model the following numerical 

simulation is carried out. 

The longitudinal laminar flow (the Poisseulle flow) in a parallel-plate conduit is considered 

(Fig. 1). The first half of the considered region is a porous medium and the second one pure 

fluid region. The porous medium is modeled as a bundle of parallel fibres arranged in a square 

array. The purpose of the present consideration is determination of the effective viscosity µ~  

in the Brinkman equation and the width of the layer l2 in which this equation is to be used. 

But for do this; the permeability of the porous medium is required. Then to determine the 

permeability the flow with the pressure gradient in unbounded porous medium was 
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considered. Numerical simulations are conducted using the meshless methods: the special 

purpose Trefftz functions (SPTF) [4].  

Let us consider a plane infinite channel adjoining with a plane infinite porous region in 

which flow is governed by the Darcy filtration equation  

 Dq
kdz

dp µ−=  for 10 lx ≤≤  (3) 

the Brinkman filtration equation 

 
2

2

~
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qd
q

kdz

dp B
B µµ +−=  for bxl ≤≤1  (4) 

and the Stokes equation 
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For the dimensionless variables 
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the governing Eq. (3-5) obtain the form 

 1
1 =DQ
K

 for 10 LX ≤≤  (7a) 
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Wd
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which is solved with following boundary conditions 

 BD QQ =  for 1LX =  (8a) 
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The exact solutions of the problem (7-8) takes the form 
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2 DETERMINATION OF THE PERMEABILITY 

One of the method for determination of the permeability of the porous medium based on 

the mesurment filtration velocity at the known pressure gradient. In the present paper the 

longitudinal flow problem is consider by using the special purpose Trefftz functions. The 

method is semi-analytical. Application of the method gives analytical form of the 

dimensionless permeability of the porous medium. Only the unknown coefficients of the 

solution are obtained numerically. 

 
Figure 2: Unbounded porous medium (a), repeated element FΩ (b). 

Let us consider steady, fully developed, laminar, incompressible viscous fluid flow driven by 

a constant pressure. A porous medium is modelled by a regular array of parallel fibers. The 

flow is longitudinal with respect to fibers. which are arranged in a regular square (Fig. 2a) 

arrays. The equation of motion is given by 

 ,
12

dz

dp
w

µ
=∇  in FΩ  (10) 

where w is the axial velocity, p is the pressure, μ is the viscosity of the fluid, and ΩF is the 

fluid domain.  

For the dimensionless variables 
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the governing Eq. (10) obtain the form 

 12 −=∇ W . (12) 

Equation (12) is solvd with the boundary conditions (no slip and symmetry conditon) 

presented on Fig. 2b. 

The exact solution of Eq. (12) can be expressed using the special purpose Trefftz functions 
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The unknown coefficients Bk (k = 1,…, N) are determined by solving the system of linear 

equations resulting from satisfying of the boundary condition 0=∂∂ XW  for 1=X , using the 

boundary collocation technique [5].  
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Using the Darcy law (1) the longitudinal component of the filtration velocity can be related to 

the average velocity through the repeated element of the fiber system 
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( )4tan4 πβ =  is parameter of the porous medium. 

The dimensionless component of the permeability tensor in the direction parallel to the 

fibers is a function of the number of collocation points N and can be calculated from 
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The value of the permeability parameter is calculated as 
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Figure 3. The non-dimensional component of the permeability tensor in the direction parallel to the fibers and 

the permeability parameter. The numerical results (marks) compared with the analytical solution (line)[19] 

The value of the dimensionless permeability as a function of the fibers volume fraction is 

presented in Fig. 3. The problem was solved for N = 7 collocation points on the boundary. 
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The numerical results (marks) are compared with the analytical presented by Drummond and 

Tahir [6] (line). Compatibility between the results is great. 

3 DETERMINATION OF THE EFFECTIVE VISCOSITY  

In the rotational viscometer the fluid viscosity is determined by measurement of the torque 

of the rotating cylindrical surface. The effective viscosity in the Brinkman equation can be 

determined in a similar way. In this case the imaginary physical experiment is realized by 

a numerical simulation. The porous region is placed between two parallel plates. One plate is 

fixed ( 0=zq ) whereas the other moves with a constant velocity ( uqz = ). The determination 

of the effective viscosity is possible by calculation of the shear stress on the moveable plate.  

The Brinkman equation for one-dimensional shear flow in the absence of pressure gradient 

through the porous layer has the following form 

 ,0~
2

2

=− z
z q

kdx

qd µµ  in FΩ . (17) 

where zq  is the filtration velocity in direction of fiber axis, µ~  is the effective viscosity of the 

fluid.  

The Eq. (17) can be written in the non-dimensional form 
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The tangential stress on the movable plate can be expressed as 
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On the other hand, the microstructural shear flow problem between two plates  
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with no-slip boundary conditions: W = 0 on the immovable wall and fibers and W = 1 on the 

movable wall is solved by means of the Trefftz method. The velocity of the flow is 

approximated by a linear combination of special purpose Trefftz functions. 
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Figure. 4. Wall-bounded porous medium. 

Since the array of fibers is streaked and periodic in one direction it is sufficient to consider the 

problem only in one repeated strip. The repeated strip is divided into smaller elements 

associated with each of the fibers which are called large finite elements.  

 
Figure. 5. The symmetry lane of porous medium 

For each large finite element the approximate solution is express as 
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which satisfies exactly the governing Eq. (21) and some of the boundary conditions. The 

unknown coefficients Ck (k = 1,2,…,N) are determined using the boundary collocation 

technique by satisfying the remaining boundary conditions (in particular the splitting 

boundary conditions between the large finite elements). The tangential stress on the movable 

wall can be determined from 
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Comparing Eqs. (20) and (23) the following relationship can be written 
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where ( ) =
1

0

,, dY
dX

dW
NLRc ϕ  and LR denotes the number of fibers rows. 

The value of the constant c and the dimensionless effective viscosity as a function of the fiber 

volume fraction are presented in Fig. 6. The dimensionless effective viscosity was calculated 

for 5 collocation points on each boundary and 8 rows of fibers. The effective viscosity is 

smaller than the pure fluid viscosity. The ratio of the effective viscosity to the viscosity of the 

pure fluid; α at the beginning is decreasing, obtains minimum and then is growing. 

  
Figure 6. Dimensionless effective viscosity α, and the constant c. 

2 THE MICROSTRUCTURAL SHEAR FLOW PROBLEM 

Let us consider a layer of the porous medium located between two fixed plates (Fig. 1). 

The microstructural flow in the layer of porous medium is governed by the dimensionless 

Poisson equation  

 12 −=∇ W  (25) 

with the no slip boundary conditions: W = 0 on the immovable wall.  

 
Figure 7. The repeating part of the considered channel  
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Figure 8. Large finite element with boundaty conditions  

Since the array of fibers is streaked and periodic in one direction it is sufficient to consider the 

problem only in one repeated strip (Fig. 7). In all cases the repeated strip is divided into 

smaller elements associated with each of the fibers (Fig. 8). 

The flow problem is solved by means of the Trefftz method. For each large finite element the 

special purpose Trefftz functions are used to express the approximate solution  
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Eq. (26) satisfies exactly the governing Eq. (25) and the boundary conditions 0=W  for ER =
and 0=∂∂ θW  for { }πθ ,0= . 

For the free flow area the approximate solution is express as 
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where Fn(X,Y) and Gn(X,Y) are the trial functions 
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The unknown coefficients Bk (k = 1,2,…,N), cn, dk (k = 1,2,…,M) are determined using the 

boundary collocation technique by satisfying the boundary conditions (Fig. 8).  

After solution of the microstructural boundary value problem the average value of the velocity 

derivative can be calculated 
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The average velocity derivative ω(X) for the different value of the fiber volume fraction φ are 

presented in Fig. 9. The problem was calculated for 5 collocation points on each boundary and 

8 rows of fibers. Thus, the width of the area H = 16. The width of the layer with the Brinkman 

equation can be determined on the basis of the obtained results, ω(X). It depends on the fiber 

volume fraction. The Darcy filtration equation is valid as long as ω(X) is close to zero. For 

greater porosity, this area is wider and approximately equals to half of the width of the porous 

area. The width of the Brinkman area decreases as the the fiber volume fraction increases. 
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Figure 9. The average of velocity derivative for different value of the fiber volume fraction. 

12 CONCLUSIONS 

In this paper to avoid calculation of the slip constant in the Beavers - Joseph boundary 

condition the Brinkman filtration layer between porous medium and pure flow fluid area was 

introduced. In the Brinkman filtration equation there are two parameters of the porous 

medium: the permeability and the effective viscosity. These two parameters were determined 

by numerical simulation of an imaginary physical experiment.  

The porous medium was modeled by a parallel bundle of straight fibers arranged in a regular 

square array. In order to determine the permeability, the flow driven by the pressure gradient 

in an unbounded porous medium was considered. To determine the effective viscosity, the 

shear flow in a flat layer of porous medium was considered. To determined the width of the 

Brinkman filtration area the microstructural shear flow was considered.  

In numerical simulations, the Trefftz method with the special-purpose Trefftz functions was 

applied. The permeability of the porous medium decreases as the the fiber volume fraction 

increases.The effective viscosity is lower than the viscosity of the pure fluid. The ratio of the 

effective viscosity to the viscosity of the pure fluid decreases as the porosity decreases.The 

width of the Brinkman area decreases as the the fiber volume fraction increases. 
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