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Abstract. The original numerical scheme is developed for vortex sheet intensity compu-
tation for 3D incompressible flow simulation using meshless Lagrangian vortex methods.
It is based on boundary condition satisfaction for tangential components of the velocity
on the body surface instead of widespread condition for normal components. For the body
triangulated surface the corresponding integral equation is approximated by the system
of linear algebraic equations, which dimension is doubled number of triangular panels.
Vortex layer intensity on the panels assumed to be piecewise-constant.

The coefficients of the matrix are expressed through double integrals over the pairs of
panels. When these panels have common edge or common vertex these integrals become
improper. In order to compute them it is necessary to exclude the singularities, i. e., to
split the integrals into regular and singular parts. Regular parts are expressed through
integrals of smooth bounded functions, so they can be integrated numerically with high
precision by using Gaussian quadrature formulae. For singular parts exact analytical
integration formulae are derived.

The developed approach allows to raise significantly the accuracy of vortex layer in-
tensity computation in vortex method for flow simulation around arbitrary 3D bodies
and use arbitrary triangular mesh on body surface including mesh refinement near sharp
edges, what is especially important for flow simulation around bodies with complicated
geometry.

1 INTRODUCTION

The problem of 3D incompressible flow simulation around an immovable body is consid-
ered. The governing equations are the Navier — Stokes equations with no-slip boundary
conditions on the body surface K and perturbation decay condition on infinity.

The immovable body is simulated by the influence of the vortex sheet with unknown
intensity γ(r, t), which is placed on the body surface, r ∈ K. There are two fundamental
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approaches to its intensity computation, which are based on the elimination of the limit
values of the normal (N -scheme) or tangential (T -scheme) velocity components on the
body surface [1].

The flow velocity in the flow domain can be computed by using the Biot — Savart law:

V (r, t) = V ∞ +
1

4π

∮
S(t)

Ω(ξ, t)× (r − ξ)

|r − ξ|3
dSξ +

1

4π

∫
K

γ(ξ, t)× (r − ξ)

|r − ξ|3
dSξ, (1)

where V ∞ is the incident flow velocity; S(t) is the vortex wake region; Ω(ξ, t) = curlV (ξ, t)
is the vorticity distribution in S(t), which assumed to be known; n(r) is unit outer normal
vector to body surface K.

Due to the presence of the vortex sheet on the body surface, velocity field, which can
be expressed by using (1), has jump discontinuity; its limit value from the body side is [2]

V −(r, t) = V (r, t)− γ(r, t)× n(r)

2
, r ∈ K.

According to the no-slip boundary condition on the body surface, the following equation
should be satisfied

V −(r, t) = 0, r ∈ K. (2)

which corresponds to the boundary integral equation with respect to unknown vortex
sheet intensity γ(r, t).

It is shown in [1] that the sufficient condition for (2) is its satisfaction only for the
tangent component of the limit value of velocity field:

n(r)×
(
V −(r, t)× n(r)

)
= 0.

It leads to the integral equation of the 2-nd kind

n(r)

4π
×

(∫
K

γ(ξ, t)× (r − ξ)

|r − ξ|3
× n(r)dSξ

)
− γ(r, t)× n(r)

2
= f(r, t), r ∈ K, (3)

where

f(r, t) = −n(r)×

((
V ∞ +

1

4π

∫
S(t)

Ω(ξ, t)× (r − ξ)

|r − ξ|3
dSξ

)
× n(r)

)

is known vector function. It expresses the vortex wake and the incident flow influence.
An efficient strategy for the vortex wake representation in vortex loop usage. The corre-
sponding algorithms are described in [3].

Note, that the kernel of the equation (3) is unbounded when |r−ξ| → 0, so in order to
solve it numerically with rather high accuracy the following assumptions are introduced:

1. The body surface is discretized into N triangular cells Ki with areas Ai and unit
normal vectors ni, i = 1, . . . , N . Such cells are usually called ‘panels’ in vortex
methods.

2. The unknown vortex sheet intensity on the i-th panel is constant vector γi,
i = 1, . . . , N , which lies in the plane of the i-th panel, i. e., γi · ni = 0.

2
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3. The integral equation (3) is satisfied on average over the panel, or, the same, its
residual is orthogonal to the basis function which is equal to the 1 on the j-th panel
and equal to 0 on all other panels. Such approach is mentioned in [1], its implemen-
tation for 2D problems is described in [4], the necessary formulae for computations
(for more general case when vortex sheet intensity along the panel in 2D case is
linearly distributed) can be found in [5]. In case of complicated airfoil shape with
essentially non-uniform discretization this approach shows rather high efficiency [6].

According to these assumptions the discrete analogue of the equation (3) can be derived:

1

4πAi

N∑
j=1

∫
Ki

(∫
Kj

ni ×
(
γj × (r − ξ)

|r − ξ|3
× ni

)
dSξ

)
dSr −

γi × ni
2

=
1

Ai

∫
Ki

f(r, t)dSr,

i = 1, . . . , N. (4)

To write down (4) in the form of a linear algebraic system we choose local orthonormal

basis on every cell (τ
(1)
i , τ

(2)
i , ni), where tangent vectors τ

(1)
i , τ

(2)
i can be chosen arbitrary

(in the plane of the cell, orthogonal one to the other) and τ
(1)
i × τ

(2)
i = ni, so

γi = γ
(1)
i τ

(1)
i + γ

(2)
i τ

(2)
i

and we can project (4) for every i-th panel on directions τ
(1)
i and τ

(2)
i [7, 8].

Note, that the obtained algebraic system has infinite set of solutions; in order to select
the unique solution the additional condition for the total vorticity (the integral from the
vorticity over the body surface) should be satisfied:∫

K

γ(r, t)dSr = 0,

which also should be written down in the discretized form.
The resulting algebraic system now is overdetermined, it should be regularized, for

example, similarly to [2] by introducing the regularization vector R = (R1, R2, R3)
T :

1

4πAi
τ
(1)
i ·

(
N∑
j=1

γ
(1)
j ν

(1)
ij +

N∑
j=1

γ
(2)
j ν

(2)
ij

)
− γ

(2)
i

2
+R · τ (2)

i =
b
(1)
i

Ai
,

1

4πAi
τ
(2)
i ·

(
N∑
j=1

γ
(1)
j ν

(1)
ij +

N∑
j=1

γ
(2)
j ν

(2)
ij

)
+
γ
(1)
i

2
+R · τ (1)

i =
b
(2)
i

Ai
,

N∑
j=1

Aj

(
γ
(1)
j τ

(1)
j + γ

(2)
j τ

(2)
j

)
= 0, i = 1, . . . , N.

(5)

Here

ν
(k)
ij =

∫
Ki

(∫
Kj

τ
(k)
j × (r − ξ)

|r − ξ|3
dSξ

)
dSr, b

(k)
i =

∫
Ki

τ
(k)
i · f(r, t)dSr,

k = 1, 2; i, j = 1, . . . , N.

The aim of the paper is to develop the numerical algorithm for the integrals in coeffi-
cients ν

(k)
ij computation.
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2 THE COEFFICIENTS CALCULATION IN THE GENERAL CASE

Coefficients ν
(k)
ij in formula (5) should be computed for all the pairs of the cells; note

that ν
(k)
ii = 0, because the self-influence of cells is already taken into account through the

non-integral term in (4) which corresponds to ±γ
(k)
i

2
terms in (5).

For i 6= j let us denote

ν
(k)
ij = τ

(k)
j ×

∫
Ki

(∫
Kj

r − ξ∣∣r − ξ∣∣3dSξ
)
dSr = I ij × τ (k)

j , k = 1, 2, i, j = 1, . . . , N. (6)

Integral I ij is calculated over the triangular cells Ki and Kj, where the i-th cell we
call ‘control’, the j-th cell – ‘influence’ cell. Note, that this problem in the whole is simi-
lar to the evaluation of Galerkin integrals which arise in the Boundary Element Method
(BEM, [9]). There are some known approaches for numerical computation of such inte-
grals, for example, Taylor — Duffy method [10]. However, the generality of the mentioned
method leads to high computational cost of the numerical algorithm. In the present paper
efficient numerical procedures are developed for the equation (4), which make it possible
to compute the integrals (6).

Integral I ij is ‘skew-symmetric’, i. e., I ij = −Iji. This property on the one hand makes
it possible to compute only one half of such coefficients, and on the other hand can be
used for error estimation of the integral numerical computation.

The inner integral in (6) over the influence cell Kj

J j(r) = −
∫
Kj

r − ξ∣∣r − ξ∣∣3dSξ (7)

can be calculated exactly using the computational software of symbolic mathematics
Wolfram Mathematica and Handbook of integrals [11]. It can be expressed through the

known vectors sk = r
(j)
k − r, k = 1, 2, 3, where r is the point for which integral (7) is

calculated, r
(j)
k are the vertices of Kj triangular cell. Denoting unit vectors

e
(j)
k =

sk+1 − sk∣∣sk+1 − sk
∣∣ =

r
(j)
k+1 − r

(j)
k∣∣r(j)k+1 − r
(j)
k

∣∣ , σk =
sk∣∣sk∣∣ , k = 1, 2, 3,

and assuming all the indices to be calculated using a modulus of 3, we obtain

J j(r) = Θjnj + Ψj × nj, j = 1, . . . , N,

where Θj is the solid angle subtended by triangular cell Kj which can be calculated by
using the formula [12]

Θj = 2 arctan

(
s1s2s3∣∣s1 ∣∣ · ∣∣s2∣∣ · ∣∣s3∣∣+

(
s1 · s2

)∣∣s3∣∣+
(
s2 · s3

)∣∣s1∣∣+
(
s3 · s1

)∣∣s2∣∣
)
,

here s1s2s3 denotes the scalar triple product of the vectors;
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function Ψj is expressed as the following:

Ψj =
3∑

k=1

lnψ
(j)
k ek,

where

ψ
(j)
k =



∣∣sk∣∣∣∣sk+1

∣∣ 1 + e
(j)
k · σk

1 + e
(j)
k · σk+1

, e
(j)
k · σk 6= −1, e

(j)
k · σk+1 6= −1,∣∣sk+1

∣∣∣∣sk∣∣ , e
(j)
k · σk = e

(j)
k · σk+1 = −1.

The outer integral in (6)

I ij =

∫
Ki

J j(r) dSr (8)

can’t be expressed exactly in elementary functions, so it is computed by using Gaussian
quadrature formulae:

I ij =

∫
Ki

J j(r) dSr ≈ Ai

NGP∑
p=1

ωpJ j(ηp),

where NGP is the number of Gaussian points; ωp are weight coefficients; ηp are the
positions of the Gaussian points. Values of ωp and ηp for different values of NGP for
triangular cells can be found, for example, in [13].

General approach, however, has a significant restriction: it can be implemented only
for the influence and control cells which are far one from the other. For the cells which
have common edge or common vertex (‘neighboring cells’) the corresponding integral is
improper, so Gaussian quadratures become unsuitable. Direct numerical computation of
improper integral is a non-trivial problem, so for such cases an original semi-analytical
approach is developed.

If the cells have common edge or common vertex, the singularity should be excluded
from the J j(r):

J j(r) = J reg
j (r) + J sing

j (r).

Here J reg
j (r), which has the form

J reg
j (r) =

(
Θj(r)−Θ sing

j (r)
)
nj +

(
Ψj(r)−Ψ sing

j (r)
)
× nj,

has no singularities and can be easily integrated numerically with high accuracy by using
Gaussian quadrature formulae∫

Ki

J reg
j (r) dSr ≈ Ai

NGP∑
p=1

ωpJ
reg
j (ηp).

5
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For the improper (singular) integral∫
Ki

J sing
j (r) dSr =

(∫
Ki

Θ sing
j (r) dSr

)
nj +

(∫
Ki

Ψ sing
j (r)dSr

)
× nj

the exact analytical quadrature formulae are derived, which are shown below.

3 SINGULARITY EXCLUSION IN CASE OF NEIGHBORING CELLS
WITH COMMON EDGE

If the cells Ki and Kj have common edge with directing unit vector e3, as it is shown
in fig. 1, singular terms have the following form (hereinafter the upper index (j) in unit

vectors e
(j)
1 , e

(j)
2 and e

(j)
3 is omitted):

Θ sing
j (r) = 2

2∑
k=1

atan
(
akeke3, (e3 − ek) · (ak − ek)

)
,

Ψ sing
j (r) = e3 ln

(m1

m2

e3 · (e3 + a1)

e3 · (e3 − a2)

)
+

2∑
k=1

ek ln
(mk

m3

ek · (ek − ak)
)
,

where

m1 =
∣∣r − r(j)1

∣∣, m2 =
∣∣r − r(j)3

∣∣, m3 =
∣∣r(j)1 − r

(j)
3

∣∣,
a1 =

r − r(j)1

m1

, a2 = −r − r
(j)
3

m2

,

function φ = atan(y, x) means the angle φ ∈ (−π, π], for which

sinφ =
y√

x2 + y2
, cosφ =

x√
x2 + y2

;

this function corresponds to ‘traditional’ programming language function atan2(y, x).
Expression for Θ sing

j , as well as all scalar multipliers of Ψ sing
j , expressed via logarithms,

can be integrated analytically over the cellKi, and the resulting formulae are the following:∫
Ki

Θ sing
j (r) dSr = −2Ai

(
q0(ξ, α, β, µ, γ, λ) + q0(ξ, β, α, σ, δ, θ)

)
,

∫
Ki

Ψ sing
j (r) dSr = Ai

(
q12(ξ, α, β, µ, γ, λ)e1 + q12(ξ, β, α, σ, δ, θ)e2 + q3(α, β)e3

)
.

Here auxiliary functions q0, q12 and q3 are introduced and there are the following
expressions for them:

6
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Kj

e1

a1
a2Ki

e2

ξ

δ

γβ

ν

α

e3

r

Figure 1: Cells Ki and Kj in case of having common edge

q0(ξ, α, β, µ, γ, λ) =



φ∗ +
sin γ sin ν

sin2 µ sinα

((
cos β sin γ − sin β cos γ cos ξ

)
φ∗∗ +

+ sin ξ sin β
(

cos2
µ

2
ln

cos β/2

sin ν/2
+ sin2 µ

2
ln

sin β/2

cos ν/2
+ ln

cosλ/2

sin γ/2

))
,

|ξ|+ |β − γ| > 0,

φ∗, ξ = β − γ = 0,

q12(ξ, α, β, µ, γ, λ) =



− 3

2
+

1

sinα sin2 µ

(
ln(1 + cosλ) sin β(cos ν + cosµ cosλ) +

+ ln(1− cos γ) sin ν(cos β + cos γ cosµ) +

+ ln
sin β

sin ν
sin β(1− cosµ)(cos ν − cosλ)−

− sin ν sin β
(
−2φ∗∗ sin ξ sin γ +

+ (sin γ cos β cos ξ − sin β cos γ) ln
1− cos ν

1 + cos β

))
, |ξ|+ |β − γ| > 0,

− 3

2
+

1

2 sinα

(
cos ν sin γ ln(1 + cos ν) + sin ν cos γ ln(1− cos γ)

)
,

ξ = β − γ = 0.

q3(α, β) =
sin ν

sin β
ln
(

tan
α

2
tan

ν

2

)
+

sin ν

sinα
ln
(

tan
β

2
tan

ν

2

)
+ ln

(
tan

α

2
tan

β

2

)
.

7
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Here it is denoted:

σ = π − arccos(cosα cos δ + cos ξ sinα sin δ),

µ = π − arccos(cos β cos γ + cos ξ sin β sin γ),

λ = π − arccos(cosα cos γ − cos ξ sinα sin γ),

θ = π − arccos(cos β cos δ − cos ξ sin β sin δ),

φ∗ = atan(sin ξ sinα sin γ, 1− cosα + cos γ + cosλ),

φ∗∗ = atan(sin ξ sinα sin γ, 1 + cosα− cos γ + cosλ).

Here α and β are the angles of the triangle Ki, which adjoin the common edge of the
cells Ki and Kj, ν = π − α − β; γ and δ are the angles of the triangle Kj, which adjoin
the common edge; ξ is the angle between the planes of the cells Ki and Kj.

4 SINGULARITY EXCLUSION IN CASE OF NEIGHBORING CELLS
WITH COMMON VERTEX

The scheme for the case when the cells Ki and Kj have a common vertex, is shown in
fig. 2. Triangle cells Ki and Kj determine two planes, which intersection line has directing
unit vector e0, which is collinear to vector ni×nj and its direction is chosen such as triple
vector product e0cni > 0, where c connects the center of the cell Ki with the common
vertex.

Figure 2: Cells Ki and Kj in case of having common vertex

If the cells Ki and Kj are coplanar, i. e., ni × nj = 0, then the direction of e0 can be
chosen arbitrary, but in order to write down the formulae which are suitable for general
case it should be equal to

e0 =

{
−e1, e2 · e3 ≤ 0,
e3, e2 · e3 > 0,

where ek are unit vectors of the sides of the control cell Ki, when it is assumed that the
common vertex is denoted by r

(i)
1 :

ek =
r
(i)
k+1 − r

(i)
k

|r(i)k+1 − r
(i)
k |
, k = 1, 2, 3.

8
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As it is shown in fig. 2, the shape of the influence cell Kj is defined by two unit vectors

e∗1 =
r
(j)
2 − r

(j)
1

|r(j)2 − r
(j)
1 |

, e∗2 =
r
(j)
3 − r

(j)
1

|r(j)3 − r
(j)
1 |

and two angles

δ∗k = ∠(e0, e
∗
k) = atan(e0e

∗
knj, e0 · e∗k), k = 1, 2.

If δ∗1 = π or δ∗2 = π then vector e0 should be reversed, and angles δ∗k should be
recomputed once again for new value of e0.

In addition, if δ∗1δ
∗
2 < 0 and

∣∣δ∗1− δ∗2∣∣ > π, vector e0 also should be reversed, and angles
δ∗k should be recomputed.

Finally, when direction of e0 is determined, the angle between planes of Ki and Kj can
be computed as the following:

ξ = atan(ninje0, ni · nj).

In order to compute the regular part J reg
j (r), the auxiliary 2D basis should be intro-

duced:

u∗k = e0 + e∗k,

v∗k = (e0 + e∗k)× e0,

Then

Θ sing
j (r) = −2(Θ∗2 −Θ∗1 + Θ̃)

can be expressed via vectors u∗k, v
∗
k and

pk =
(
(b+ e0) · u∗k

)
u∗k +

(
(b+ e0) · v∗k

)
v∗k, mb =

∣∣r(i)1 − r
∣∣, b =

r
(i)
1 − r
mb

,

where

Θ∗k =

{
atan(pk · v∗k, pk · u∗k), |pk| > 0,

atan(b · nj, bnje0), |pk| = 0,

Θ̃ = 0 except the case when |p1| = 0; in this case Θ̃ = π sign ξ.
Then,

Ψ sing
j (r) = −(Ψ∗2 −Ψ∗1),

where

Ψ∗k = e∗k ln

(
mb√
Aj
e∗k · (b+ e∗k)

)
.

9
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These expressions also can be integrated analytically over the cell Ki:∫
Ki

Θ sing
j (r) dSr = −2Ai

(
q4(δ∗∗)− q4(δ∗) + q̃q4(0)

)
,

∫
Ki

Ψ sing
j (r) dSr = −Ai

(
q5(δ∗∗)e∗∗ − q5(δ∗)e∗

)
,

where

q̃ =

{
0, δ∗1δ

∗
2 ≥ 0,

−2 sign ξ, δ∗1δ
∗
2 < 0.

The auxiliary functions q4 and q5 are the following:

q4(δ) =
q41(δ)− q42(δ)

sinψ sinκ
,

where

q41(δ) = sinµ sin(ν + ψ) atan
(

sin ξ sin
δ

2
, cos ξ sin

δ

2
+ cos

δ

2
cot

ν + ψ

2

)
−

− sin ν sin(µ− ψ) atan
(

sin ξ sin
δ

2
, cos ξ sin

δ

2
+ cos

δ

2
tan

µ− ψ
2

)
,

q42(δ) =


sinµ sin ν sin δ

D

(
ω cos η +

sinψ sin ξ

2

(
ln
(1− cosλ

1 + cos θ

sin ν

sinµ

)
− cosσ ln

(
tan

ν

2
tan

µ

2

)))
,

ξ 6= 0 and sin(δ − ψ) 6= 0,

0, ξ = sin(δ − ψ) = 0;

q5(δ) = q51(δ)− q52(δ),

where

q51(δ) = −3− ln 2

2
+

sinµ sin(ν + ψ) ln(1 + cos θ)− sin ν sin(µ− ψ) ln(1− cosλ)

sinκ sinψ
+

+
1

2
ln

sin ν sinµ

sinκ
− cos ν sinµ

sinκ
ln sin ν − cosµ sin ν

sinκ
ln sinµ,

q52(δ) =



sin ν sinµ

D sinκ

(
sin δ cos η

sinψ
ln

1 + cos θ

1− cosλ
− cosχ ln

(
tan

ν

2
tan

µ

2

)
+

+ 2ω sin δ sin ξ +
1

2
G ln

sin ν

sinµ

)
, ξ 6= 0 and sin(δ − ψ) 6= 0,

1

2

(
sinψ

(1 + cos ν

sin ν
− sinµ

1 + cosµ

)
− cosψ ln

1− cos ν

1 + cosµ

)
, ξ = sin(δ − ψ) = 0.

10
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Here we denote for simplicity

D = sin2(δ − ψ) + 4 sin δ sinψ
(

sin δ sinψ cos2
ξ

2
+ cos δ cosψ

)
sin2 ξ

2
,

G = sin 2(δ − ψ)− 4 sin δ
(

sin δ sin 2ψ cos2
ξ

2
+ cos δ cos 2ψ

)
sin2 ξ

2
,

ω = atan
(

sin ξ sin δ sin
κ

2
, cos ξ sin δ sin

(
ν + ψ +

κ

2

)
+ cos

κ

2
− cos δ cos

(
µ− ψ +

κ

2

))
.

Here κ is the angles of the triangle Ki, which adjoins the common vertex of the cells
Ki and Kj; µ and ν are the other angles of the cell Ki; ξ is the angle between the planes
of the cells Ki and Kj; ψ is the angle between e0 and the side of the triangle Ki, which is
opposite to the common vertex; δ∗ and δ∗∗ are the angles between e0 and vectors e∗ and
e∗∗, respectively; cosσ, cosλ, cos θ, cos η and cosχ can be calculated by using formulae

cosσ = cosψ cos δ + cos ξ sinψ sin δ,

cos η = cos δ sinψ cos ξ − sin δ cosψ,

cosχ = sin δ cosψ cos ξ − cos δ sinψ,

cosλ = cos δ cos(µ− ψ)− cos ξ sin δ sin(µ− ψ),

cos θ = cos δ cos(ν + ψ) + cos ξ sin δ sin(ν + ψ).

5 CONCLUSIONS

The derived formulae for I ij makes it possible to construct numerical procedure for
solving of the discrete analogue of the integral equation for the vortex sheet intensity
calculation in the framework of ‘tangent’ approach. It allows to use arbitrary triangular
mesh on the body surface and to refine mesh near sharp edges, that is especially important
for the flow around 3D wings simulation. Despite the fact that the dimension of the
linear system in the developed numerical scheme is twice as large then in traditional
implementations of vortex methods, its accuracy is much higher.
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