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Abstract. Lagrangian vortex methods are powerful tool for numerical simulation in
CFD and coupled fluid structure interaction (FSI) problems. The main feature of vortex
methods is vorticity considering as a primary computed variable, while velocity and pres-
sure distributions can be reconstructed by using the Biot — Savart law and the Cauchy
— Lagrange integral analogue. Advantages of vortex methods include the possibility to
“concentrate” computational resources in the domain with non-zero vorticity and to sim-
ulate arbitrary large displacements of the airfoils in the flow. Moreover, in contrast to
mesh methods, computational cost of such simulation just a little higher than for flow
simulation around immovable airfoil. In this research the problems of flow simulation
around oscillating and immovable circular cylinders using vortex methods are considered.
The wind resonance phenomenon is investigated, when eigenfrequency of the mechanical
system is close to vortex shedding frequency. All numerical results are in good agreement
with experimental data.

1 INTRODUCTION

One of the most typical Fluid-Structure Interaction (FSI) problem is flow simulation
around elastically fixed circular cylinder which oscillates under hydrodynamic forces. Such
problem arises in number of engineering applications: strain estimation of smoke stacks
and high towers caused by a wind load, dynamics simulation of underwater and overwater
oil and gas pipelines, vibration simulation of heat exchanger pipelines in nuclear reactors,
Aeolian vibration and galloping simulation of overhead power line wires, etc. We consider
two-dimensional FSI problem of flow simulation around circular airfoil, which oscillates
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with rather high amplitude (comparable with diameter of the cylinder) at low and in-
termediate Reynolds numbers, when it is impossible to assume the flow to be potential
and use simplified approaches to hydrodynamic loads prediction. Moreover, we consider
the eigenfrequency of the mechanical system to be close to vortex shedding frequency;
it means that it is necessary to simulate unsteady flow and solve coupled hydroelastic
problem. If flow velocity is rather low, when the media compressibility influence can be
neglected, such problem can be solved efficiently by using vortex methods which belong
to the class of meshless Lagrangian CFD methods. The aim of this research is to estimate
the accuracy and efficiency of the VM2D open source code developed by the authors and
investigate the possibility of the partitioned coupling strategy usage in the mentioned
model problem.

2 GOVERNING EQUATIONS

The viscous incompressible flow of the constant density is described by the continuity
equation and the Navier — Stokes equations

∇ · V = 0; (1)

∂V

∂t
+ (V · ∇)V − ν∆V = −∇p

ρ
, (2)

where V = V (r, t) is the flow velocity, ν is the kinematic viscosity coefficient, p = p(r, t)
is the pressure, ρ = const is the density of the flow.

The parameters of the incident flow are considered to be constant:

V → V ∞ and p→ p∞ at |r| → ∞. (3)

The position of the airfoil surface line K is determined by the airfoil dynamics, so the
no-slip boundary condition should be satisfied at movable boundary:

V (r, t) = V K(r, t), r ∈ K, (4)

where V K is the velocity of the airfoil surface line.
The aerodynamic loads acting on the airfoil, in particular, the drag and lift force,

can be calculated if the pressure distribution as well as viscous stresses distributions are
known over the surface line. In order to compute pressure force, the integral expression is
derived [1], which follows from the Cauchy — Lagrange integral analogue for non-potential
flows [2].

We consider motion of a circular airfoil with one degree of freedom; it is fixed with a
linear viscoelastic Voigt-type constraint can oscillate across the flow due to the constraint
force and lift force action, Fig.1. The airfoil moves in the flow according to the following
equation:

mÿ + bẏ + ky = Fy, (5)

where m is the mass of the airfoil, b is the damping coefficient, k is the rigidity of the
constraint, Fy is the lift force, and y is the airfoil deviation from the equilibrium position.
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Figure 1: Oscillations simulation with 1 degree of freedom for circular cylinder

At the Reynolds numbers Re = V∞D/ν > 40, a chain of vortices descending one after
another is formed (the so-called von Kármán vortex trail). The vortex shedding causes a
periodical variation in the pressure distribution and the resulting aerodynamic force and,
therefore, the airfoil starts to oscillate.

3 NUMERICAL SIMULATION IN FSI PROBLEMS BY USING THE VM2D
CODE

The description of vortex methods can be found in [3, 4, 5, 6]. However, vortex meth-
ods are not implemented in any known software packages: both commercial and freely
distributed. The authors of the present paper have suggested some modifications of nu-
merical algorithms of vortex methods [7, 8] and have started to develop new software
package VM2D — Open source code for two-dimensional flows simulation us-
ing vortex methods [9, 10]. Parallel algorithms are implemented in VM2D, that makes
it possible to accelerate numerical simulations significantly. Note, that GPU usage seems
to be the most efficient way, one graphical accelerator (GPU) permits to achieve nearly
the same performance as 200 . . . 1000 central processor (CPU) cores [11, 12].

The numerical solution of FSI problem problem requires simultaneous solving of equa-
tions of both hydrodynamical and mechanical equations. There are two different ap-
proaches to implement the coupling strategy in FSI-problems: partitioned and monolithic
ones. According to the partitioned strategy, each time step should be split into hydro-
dynamical and mechanical substeps. At the first substep we simulate the flow around
the airfoil moving with known velocity and position and compute hydrodynamic loads
acting it. At the mechanical substep hydrodynamic forces are assumed to be known from
the previous substep and dynamics equations for the mechanical system are solved. This
strategy is rather simple in implementation. The main advantage of such strategy is
the possibility of independent solvers usage, interacting only through the interfaces, so it
is easy to develop new methods and algorithms, improve existing ones or even use some
“outer” solvers. However, this strategy can’t be applied for the problems when the density
of the airfoil is comparable with the density of the flow. In this case numerical algorithm
becomes unstable.

The second strategy (monolithic) is based on simultaneous solution of two sub-problems
being discretized and written down in form of one system of linear algebraic equations.
In rather simple cases it is possible due to linear expression of the integral forces through
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parameters of the vortex sheet being generated on the airfoil surface [1]. In more com-
plicated problems, i.e., in case of deformable airfoil or non-linear constraint, monolithic
approach in general case leads to non-linear equations, which require application of iter-
ative methods. The main advantages of the monolithic method are high accuracy and
stability, however in the framework of this approach it’s impossible to split the code into
different modules.

4 THE FLOW AROUND IMMOVABLE AIRFOIL

In order to verify the VM2D code and the algorithms implemented there, the flow
around immovable circular airfoil was simulated. The dimensionless parameters were the
following: V∞ = 3.0, ρ = 1.0, the kinematic viscosity is ν = 0.02, and the diameter
of the airfoil is D = 1.0. Such flow regime is characterized by the Reynolds number
Re = V∞D/ν = 150. The airfoil was discretized into Np = 400 panels, the time step was
chosen equal to τ = 0.005, the radius of the vortex element was ε = 0.004.

The Strouhal number St = fD/V∞ calculated with respect to the frequency f of lift
force oscillations is about 0.178. This result is in good agreement with experimental
results [13] and CFD simulations, i.e., [14].

The obtained results show that the vortex method implemented in the VM2D code
permits to simulate the viscous incompressible flow with acceptable accuracy in a short
period of time: the flow reaches quasi-steady regime at t ≈ 25, so we need to perform
5 000 time steps. Performing computations by using 1 CPU (4 core, Intel i7-920) + 1 GPU
(Nvidia Geforce 970), we spent less then 1500 seconds (25 minutes) in order to obtain the
flow in steady state regime. It means that 1 time step performing requires only 0.3 sec.

Figure 2 shows the typical form of the vortex wake (von Kármán vortex trail), which
is formed behind the immovable circular airfoil.

Figure 2: von Kármán vortex trail behind the circular airfoil

Hydrodynamic forces acting on the cylinder, are also in good comparison with experi-
mental data [15].

5 WIND RESONANCE SIMULATION

For simulation of the wind resonance phenomenon (Fig. 1) the same dimensionless
parameters as in case of an immovable airfoil were used. The airfoil’s mass was m = 39.15
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and the damping coefficient was b = 0.731. Varying the rigidity of the constraint, it is
possible to change the eigenfrequency of the mechanical system ω ≈

√
k/m. Note, that

it is possible to neglect the influence of the damping in the constraint, since it causes the
eigenfrequency variation of less than 1 %.

The wind resonance phenomenon takes place when the Strouhal number

Stω =
ω

2π

D

V∞
,

which means the dimensionless frequency of natural oscillations, is close to the Strouhal
number St calculated with respect to the frequency of vortex shedding, which determines
the frequency of the lift force oscillations.

Oscillation processes (Fig. 1) were simulated within a dimensionless period of time
0 ≤ t ≤ 250. At the initial time, the airfoil is in an equilibrium position and its initial
velocity is equal to zero. Each simulation process was performed using 1 CPU (4 core, Intel
i7-920) + 1 GPU (Nvidia Geforce 970); when the oscillations are far from the resonance
regime, the computational time is about 0.34 sec. per step, in case of resonance regime
computational time is about 0.58 sec. per step. The time dependencies of the airfoil
oscillations amplitude for two different regimes are shown in Fig. 3-4.
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Figure 3: Oscillations amplitude at Stω = 0.156
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Figure 4: Oscillations amplitude at Stω = 0.2

It can be seen that the amplitude of oscillation behavior is quite different. When
the Strouhal number corresponding to the frequency of natural oscillation Stω = 0.156,
differs significantly from the Strouhal number, which corresponds to the frequency of
vortex shedding from the immovable cylinder, the amplitude of the airfoil oscillations
(Fig. 3) remains rather small: not more than 5 % of the diameter in transient regime and
about 2 % of the cylinder diameter in steady-state regime.

In the case when Stω is close to the Strouhal number, which corresponds to the fre-
quency of vortex shedding from the immovable cylinder, or at slightly higher values of
Stω (due to well-known vortex shedding frequency lock-in phenomenon [16]) the transient
regime is very “smooth”, the amplitude increases monotonously and it reaches rather high
values — about 50 % of the cylinder diameter. The time dependence for the amplitude
of oscillations at Stω = 0.200 is shown in Fig. 4.
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Figure 5 shows the dependence of the average value of the oscillations amplitude in
steady-state regime on the Strouhal number in the range Stω = 0.154 . . . 0.224.
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Figure 5: Dependence of the average oscillations amplitude Aav on the Strouhal number Shω

It is seen that for the Strouhal numbers Stω = 0.166 . . . 0.202, i.e., inside the lock-in
range, the amplitude increases significantly — more than 35 % of the cylinder diameter.
This phenomenon is called “wind resonance”.

For the chosen parameters, the maximal amplitude of the airfoil oscillations is about
0.507 of its diameter, it occurs when the Strouhal number Stω = 0.200. The results of
numerical flow simulation around oscillating circular cylinder using vortex method are in
good agreement with the experimental data: maximal amplitude of the circular airfoil
oscillation is about 0.5 of its diameter [18, 17]. The obtained results for the drag and lift
coefficients Cx and Cy are shown in Fig. 6 for resonance regime with the highest amplitude
(Stω = 0.200) and in Fig. 7 for the non-resonance regime (Stω = 0.156).
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Figure 6: Unsteady drag coefficient Cx and lift coefficient Cy for resonance regime
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Figure 7: Unsteady drag coefficient Cx and lift coefficient Cy for non-resonance regime

It should be noted, that all the described results have been obtained by using parti-
tioned approach (coupling strategy). It is possible due to high density ratio of the airfoil
and the flow: in the considered example ρbody/ρflow ≈ 50. However, the partition coupling
strategy remains applicable for lower values of density ratio. Numerical simulations show,
that it is possible to simulate the oscillations of the airfoil with the same discretization
parameters and the same eigenfrequency for ρbody/ρflow > 2. At the lower values of the
density ratio the numerical instability occurs, and it can not by suppressed, for example,
by reducing the time step value.

The only way for numerical simulation by using vortex method in such cases is mono-
lithic coupling strategy usage.
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