
6th European Conference on Computational Mechanics (ECCM 6)
7th European Conference on Computational Fluid Dynamics (ECFD 7)

1115 June 2018, Glasgow, UK

ON CPU AND GPU PARALLELIZATION OF VM2D CODE
FOR 2D FLOWS SIMULATION USING VORTEX METHOD

KSENIIA S. KUZMINA1,2, ILIA K. MARCHEVSKY1,2

AND EVGENIYA P. RYATINA1,2

1 Bauman Moscow State Technical University
105005, Russia, Moscow, 2-nd Baumanskaya st., 5

2 Ivannikov Institute for System Programming of the RAS
109004, Russia, Moscow, Alexander Solzhenitsyn st., 25

kuz-ksen-serg@yandex.ru, iliamarchevsky@mail.ru, evgeniya.ryatina@yandex.ru

Key words: Vortex Methods, VM2D Code, CPU, GPU, MPI, OpenMP, CUDA

Abstract. VM2D is an open-source software being developed by the authors for two-
dimensional incompressible flows simulations around airfoils. VM2D is based on meshless
Lagrangian vortex methods. The main operations of the algorithm are pointed out,
and the estimations of their computational complexity are given. Two model problems
with different parameters are considered in order to analyze the ratio between computa-
tional complexities of the operations. Parallel algorithms are implemented for all time-
consuming operations to perform the simulations on CPU and GPU. Test problems show
that VM2D is efficiently parallelized; the accelerations achieved on GPUs are comparable
to acceleration on hundreds and even thousands of CPU cores.

1 INTRODUCTION

In many engineering applications Fluid–Structure Interaction problems appear, when it
is necessary to calculate the loads acting on the construction being immersed into the flow.
Such problems become especially complicated when we deal with essentially unsteady flow
with intensive vortex shedding: in this case, it is impossible to use approximate models
based on stationary aerodynamic characteristics, so, the only way is to perform direct
numerical simulation of the flow. Moreover, when designing a structure, it is necessary
to perform a large number of numerical experiments; and in spite of large number of
commercial and open-source codes for flow simulation based on different numerical meth-
ods, there is relevant problem of approximate but efficient methods developing for direct
numerical simulation in FSI problems.

Most of the existing methods for numerical simulation in FSI problems belong to the
class of Eulerian or hybrid Eulerian/Lagrangian methods and require mesh generation in
flow domain; in case of moving or deformable body the mesh should be modified at every

Kseniia S. Kuzmina, Ilia K. Marchevsky and Evgeniya P. Ryatina

time step (except immersing boundary methods [1, 2]). In case of small body displace-
ments we can do with mesh deformation; but if the body has significant displacement or
rotation, it is necessary to reconstruct the mesh, at least after several time steps, what
reduces essentially the efficiency of the numerical method. From this point of view, the
class of meshless Lagrangian methods which doesn’t require fluid domain meshing and
permits arbitrary displacements of the body is more preferable.

In the present research the efficiency of meshless Lagrangian vortex method and its
software implementation is investigated. It should be noted that the range of applicabil-
ity of vortex methods is restricted by rather low Reynolds numbers and incompressible
flow model. However, many problems which arise in engineering practice, satisfy such
conditions and can be efficiently solved numerically using vortex methods.

The main idea of vortex methods [3, 4, 5, 6, 7] is the considering of the vorticity as the
primary calculated variable. The body is replaced with three thin sheets on its surface:
an attached vortex sheet, an attached source sheet and a free vortex sheet. The last
one models vorticity flux from the body surface; it is discretized into separate vortex
elements which, in turn, become part of the vortex wake behind the body. The intensities
of the attached sheets are expressed through the velocity of the body surface; free vortex
sheet intensity can be found from the no-slip boundary condition satisfaction on the body
surface. So, at every time step we should solve boundary equation, which follows from
boundary condition, and find the intensity of the free vortex sheet; and then this vorticity
sheds to the vortex wake.

It should be noted that vortex methods are especially efficient in comparison with mesh
methods when we simulate the external flow around the structures, since in this case the
boundary condition of perturbations decay at infinity is satisfied automatically and there is
no need to limit the computational domain artificially and set some boundary conditions
on its outer boundaries. Moreover, in most cases of the external flow simulation the
domain with non-zero vorticity is localized around and behind the body, so computational
resources can be “concentrated” in this domain due to vorticity as chosen as primary
calculated variable.

Vortex methods are well-investigated and they are rather popular in engineering com-
munity. There are various modifications of vortex methods both for numerical simulation
in 3D and 2D problems. Nevertheless, vortex methods are still not implemented in any
known software packages: both commercial and freely distributed. Of course, many re-
searchers have their own “in-house” codes, however, such software is usually used only by
small groups of scientists working also on their development. This fact negatively effects
the popularity of vortex methods.

Therefore, having some research experience in vortex methods, as well as the experience
of their software implementation in our “in-house” software [8], the authors have started
to develop new software package VM2D — Open source code for two-dimensional
flows simulation using vortex methods [9]. In [9] the general structure of the VM2D
code and main approaches implemented there are described. Current paper doesn’t aim
to re-describe VM2D software; the main purpose is to analyze the efficiency of the VM2D
code and its parallel properties.

2

Kseniia S. Kuzmina, Ilia K. Marchevsky and Evgeniya P. Ryatina

The VM2D software is based on the method of Viscous vortex domains (VVD), de-
veloped by prof. G.Ya. Dynnikova [7]. Well known models and numerical algorithms as
well as the authors’ advancements are implemented in the VM2D code [10, 11, 12, 13].
At the present moment, it is expected that the code is used for external flows simulation,
however, problems solution which require internal flow simulation is also possible, maybe
after some modification of the algorithm for higher efficiency achievement.

It should also be noted that in order to provide the simplicity of program modification,
both by the authors and other users, and the possibility of new approaches and features
addition, we have adhered to the principles of the object-oriented approach, and the
VM2D code has modular structure. The main purpose of the VM2D development is to
create a tool for the engineering problems numerical solution in a short time, so, it is
important to provide the possibility of computations performing in parallel mode. In this
paper, we study the efficiency of parallel algorithms in the VM2D.

2 MAIN COMPUTATIONAL BLOCKS IN THE VM2D ALGORITHM

There are 7 basic computational blocks in the vortex method algorithm implemented
in the VM2D. Their detailed descriptions one can find in [8, 10], here we will give only
their brief description and point out the main operations in these blocks and estimate
their computational complexities, which depend primarily on the airfoil discretization.

1. Vorticity generation on the airfoil surface. In order to calculate the free vortex
sheet intensity on the airfoil surface line, we solve the integral equation, which follows
from the no-slip boundary condition on the airfoil surface line. There are two approaches
to derive such integral equation: by satisfying the boundary condition for normal or
tangential components of flow velocity [14]. The right-hand side of these integral equations
depends on the velocity, generated on the airfoil surface by all the vortex elements, which
model the vortex wake in the flow. All the vortices contributions computation makes
this procedure time-consuming. For the numerical solution of the integral equation, the
airfoils are usually approximated by polygons consist of rectilinear panels (Fig. 1); then
linear algebraic equations system is generated according to the chosen numerical scheme.
There are number of different numerical schemes for the integral equation approximation,
they have different computational complexities (with regard to coefficients computations)
and lead to linear systems of different sizes, but in all the known scheme system size is
commeasurable with number of panels. In [12] a hierarchy of such schemes is described, all
of those schemes are based on the ideas of Galerkin approach, continuous or discontinuous.
In the current version of the VM2D code the numerical scheme with constant basis and
projection functions in the framework of tangential components approach is used, as well
as some less accurate schemes.

In order to estimate the computational complexities of the operations, we use here-
inafter the following designations:

N is number of vortex elements in the flow domain;
n is total number of panels on the surface lines of all the airfoils.
Computational complexities of the operations of this block are the following:

• the matrix coefficients computation: Q1 = 83n2,

3

Kseniia S. Kuzmina, Ilia K. Marchevsky and Evgeniya P. Ryatina

𝑖

𝑗

1st airfoil

2nd airfoil

𝑖

𝑗

𝐴𝑖𝑗
11 𝐴𝑖𝑗

22

𝐴𝑗𝑖
12

Figure 1: Two airfoils approximated with rectilinear panels

• the right-hand side vector computation: Q2 = 30Nn + 85n2,

• linear system solving: Q3 = n3/3.

In the most general case of flow simulation around m deformable airfoils, it is necessary
to recompute and solve the linear system at every time step of the simulation. The
structure of the matrix can be schematically represented as the following:

A11 A12 . . . A1m

A21 A22 . . . A2m

...
...

. . .
...

Am1 Am2 . . . Amm

 ,

where blocks Akk express the self-influence of the k-th airfoil, and blocks Akp express the
contribution of the vorticity, being generated on the surface of the p-th airfoil, to limit
value of the flow velocity on the k-th airfoil surface line.

The coefficients which form the corresponding blocks, depend on the relative positions
of the panels only; therefore, in case of non-deformable (rigid) airfoils maintaining their
positions relative to each other, the system matrix remains constant, that allows to cal-
culate all the coefficients only once, then reverse the matrix (only at the first time step,
computational complexity Qrev = n3), and solve the system by its multiplying the right-
hand side (Qmult = n2 operations). In case of non-deformable airfoils being moved relative
to each other, diagonal blocks Akk remain constants, while the other (non-diagonal) blocks
should be recalculated.

2. Velocities computation. The velocities of the vortex elements within the VVD
approach [7] consist of two components: convective velocities and diffusive (cased by
viscosity) velocities. When calculating the convective velocity, it is necessary to take into
account the mutual influence of all vortex elements (i.e., to calculate the contributions of
all the other vortices), according to the Bio — Savart law. The diffusive velocities are
also calculated by taking into account the mutual influence of all vortex elements.

Computational complexities of these operations are the following:

• convective velocities computation: Q4 = 6N2 + 8Nn,

• diffusive velocities computation: Q5 = 9N2 + 14Nn.

4

Kseniia S. Kuzmina, Ilia K. Marchevsky and Evgeniya P. Ryatina

Note, that complexity of diffusive velocities computation can be reduced by taking into
account that vortices contributions to the diffusive velocity decrease exponentially with
distance increase, so in practice it is necessary to calculate the influences only from the
vortex elements, placed not very far one from others.

It also should be noted, that the surfaces of the airfoils also make a contribution
to diffusive velocity of vortices in the flow. It should be taken into account only for
vortices which are placed close to the airfoil surface, so the computational complexity of
this procedure is proportional to n2 and it can be neglected since n � N . In practice,
however, this operation is important and in order to achieve high efficiency of parallel
implementation, it also should be parallelized.

3. Hydrodynamic loads computation. In this block we compute hydrodynamic loads
(forces and torque) acting the airfoils. For such purposes it is possible to use integral
formulae, which are derived by prof. G.Ya. Dynnikova and adapted to several types of
problems being solved by using vortex methods [15]. Note, that computational complexity
of this block is much less in comparison with the other operation, so we will not take it
into account.

4. Vorticity evolution. In this block vortices in the vortex wake are just being trans-
ferred along the calculated velocity field (recall, that it is superposition of convective and
diffusive velocity fields). We use explicit Euler integration method, so it is necessary just
to multiply vortices velocities by the time step value and add it to the current vortices
positions. So the computational complexity of the block 4 is also much less than for the
other operations, and normally it can be neglected.

5. No-throw control. This operation is necessary to exclude vortex elements that pene-
trate the airfoil. Its complexity depends on the implementation; in the first approximation
Q6 ∼ n2, and the proportionality coefficient is of the order of 10.

6. Vortex wake restructuring. Closely placed vortex elements can be merged, and vortex
elements which move far away from the airfoil, can be excluded. The computational
complexity of this algorithm, as calculations show, is of the order of Q7 ∼ N2, the
proportionality coefficient is relatively small.

Thus, the computational complexity of the last two operations, although it may be high,
is much lower than the total complexity of the other operations, so their complexities can
be taken into account approximately: we set Q6 = Q1 and Q7 = 0.2Q4.

3 MODEL PROBLEMS DESCRIPTION

In order to estimate the possible ratios of computational complexities of the above
mentioned operations for different types of problems, we consider two model problems:

Problem 1. Hydroelastic oscillations simulation for circular cylinder. We consider
flow around movable circular cylinder when vortex sheet on the surface line of cylinder is
modeled with np0 = 200 vortex elements. We assume that the vortex wake after the airfoil
is simulated by N0 = 10 000 vortex elements, and number of time steps is T0 = 30 000.
Such estimates are taken from practical simulation and correspond to the parameters of
the real algorithm.

In order to improve the accuracy of simulation, which is necessary for flow simulation

5

Kseniia S. Kuzmina, Ilia K. Marchevsky and Evgeniya P. Ryatina

Figure 2: Model problem 1 statement

at rather high Reynolds numbers (number of vortices np0 = 200 is considered to be more
or less enough only for Re ≤ 103), number of vortex elements on the airfoils surfaces np

should be increased. Total number of vortices in the flow domain N we assume to be
proportional to n2, time step should be proportionally decreased and number of steps —
proportionally increased:

n = np, N = N0 ·
(np

np0

)2
, T = T0 ·

(np

np0

)
. (1)

Problem 2. Circular cylinder hydroelastic oscillations simulation in the presence of
the screen.

The mentioned problem is considered in [16, 17]. In numerical simulation, the flow
around the airfoil which models the screen, can be considered as flow without separation,
that makes it possible to decrease number of vortices in the flow domain due to vorticity
flux simulating only on the cylinder surface (vortex sheet on the screen surface is attached).
As basic parameters of the numerical scheme, we consider the following: vortex sheet on
the cylinder surface is modeled with np0 = 200 vortex elements, vortex sheet on the screen
surface — with ne0 = 3np0 = 600 vortex elements, number of vortices in the wake in flow
domain N0 = 10 000.

Figure 3: Model problem 2 statement

As the result, for arbitrary value of np we obtain

n = 4np, N = N0 ·
(np

np0

)2
, T = T0 ·

(np

np0

)
.

6

Kseniia S. Kuzmina, Ilia K. Marchevsky and Evgeniya P. Ryatina

Computational complexities of the considered model problems for np = 200 are the
following:

S1(200) =
3∑

r=1

Qr(n, N) +
7∑

r=4

Qr(n, N) · T0 = 5.0 · 1013,

S2(200) =
7∑

r=1

Qr(n, N) · T0 = 7.1 · 1013.

Estimations for computational complexities of these problems at different values of np

(being normalized to S(np = 200)) are shown in Table 1.

Table 1: Computational complexity of the algorithm for different values of np in comparison with S(200)

np 100 200 400 600 800 1 000
S1(np)

S1(200)
0,03 1 32 240 1000 3050

S2(np)

S2(200)
0,05 1 26 188 766 2293

The diagrams in the Fig. 4 and Fig. 5 show how the shares of separate operations vary
for the considered problems with different np.

Q1 (0.2%)
Q2 (3.6%)
Q3 (0.2%)

Q4 (35.4%)

Q5 (53.3%)

Q6 (0.2%)

Q7 (7.1%)

Q1 - Matrix computation

Q2 - RHS computation

Q3 - Linear system solving

Q4 - Convective velocities computation

Q5 - Diffusive velocities computation

Q6 - No-through control

Q7 -Wake reconstruction

np=200

Q1,2,3,6 (0.2%)

Q4 (35.4%)

Q5 (53.3%)

Q7 (7.1%)

np=1000

Q1 (0.2%)
Q2 (3.6%)
Q3 (0.2%)

Q4 (35.4%)

Q5 (53.3%)

Q6 (0.2%)

Q7 (7.1%)

Q1 - Matrix computation

Q2 - RHS computation

Q3 - Linear system solving

Q4 - Convective velocities computation

Q5 - Diffusive velocities computation

Q6 - No-through control

Q7 -Wake reconstruction

Figure 4: The shares of separate operations for the Problem 1 with np = 200 and np = 1000

It is clear from the diagrams, that for different problems with different parameters the
distribution of the total computational complexity over the operations can vary signifi-
cantly. Fig. 4 shows the ratio of the complexities of the operations for Problem 1: it is
evident that in the case of np = 1000 panels, only operations 4, 5 and 7 have significant
complexities, while all the other operations takes only about 0.2 %. However, for np = 200,
the operation 3 also becomes significant. In the case of Problem 2, when there is large
number of panels on the airfoils, some of which do not shed to the flow, for np = 1000,
complexities of operations 2, 3, 4, 5, 7 are essential, while it seems that complexities of the
1 and 6 operations still can be neglected. However, if we consider the same problem with
np = 200, all the operations are essential, and in order to obtain an efficient acceleration
of computations, it is necessary to perform parallelization of all the listed operations.

7

Kseniia S. Kuzmina, Ilia K. Marchevsky and Evgeniya P. Ryatina

Q1 (2.2%)

Q2 (12.4%)

Q3 (7.2%)
Q4 (27.9%)

Q5 (42.5%)

Q6 (2.2%)

Q7 (5.6%)

Q1 - Matrix computation

Q2 - RHS computation

Q3 - Linear system solving

Q4 - Convective velocities computation

Q5 - Diffusive velocities computation

Q6 - No-through control

Q7 -Wake reconstruction

np=200

Q1 (0.1%)
Q2 (2.9%)

Q3 (2.0%)

Q4 (35.1%)

Q5 (52.8%)

Q6 (0.1%)

Q7 (7.0%)

Q1 - Matrix computation

Q2 - RHS computation

Q3 - Linear system solving

Q4 - Convective velocities computation

Q5 - Diffusive velocities computation

Q6 - No-through control

Q7 -Wake reconstruction

np=1000

Q1 (2.2%)

Q2 (12.4%)

Q3 (7.2%)
Q4 (27.9%)

Q5 (42.5%)

Q6 (2.2%)

Q7 (5.6%)

Q1 - Matrix computation

Q2 - RHS computation

Q3 - Linear system solving

Q4 - Convective velocities computation

Q5 - Diffusive velocities computation

Q6 - No-through control

Q7 -Wake reconstruction

Figure 5: The shares of separate operations for the Problem 2 with np = 200 and np = 1000

4 PARALLEL TECHNOLOGIES IMPLEMENTED IN THE VM2D CODE

In the VM2D code parallel algorithms based on the MPI, OpenMP and Nvidia CUDA
technologies are implemented, which allow one to perform simulations on multiprocessor
computers with different architectures: on CPUs (with distributed and shared memory),
and of hybrid systems with CPUs + GPUs. To achieve high acceleration and high ef-
ficiency, all the operations listed above are parallelized for all the mentioned parallel
technologies.

4.1 MPI + OpenMP parallelization

Parallelization for distributed memory systems is performed using MPI technology,
computations within one node are parallelized using OpenMP technology. To estimate
the efficiency of parallelization, the test simulations for four problems similar to Problem 1
have been performed with the following parameters: 1) np = 1000, N1 = 80 000; 2) np =
2000, N2 = 160 000; 3) np = 4000, N3 = 320 000; 4) np = 6000, N4 = 480 000.

The computations have been performed on two cluster systems:

1. Cluster with HP Blade Servers BL2x220c G7, Ivannikov Institute for System Pro-
gramming of the RAS (Infiniband QDR, 2× Intel Xeon X5670 (6 cores), 2.93 GHz).

2. Cluster HPC1 in National Research Center “Kurchatov Institute” (Infiniband QDR,
2 × Intel Xeon E5345 (4 cores), 2.33 GHz).

Fig. 6 shows the acceleration of computations on the BL2x220c G7 system. The black
line shows the acceleration level for the “ideally parallelized” code with 0.1 % of non-
parallel (sequential) code calculated according to the Amdahl law. It can be seen, that
parallelization is the more efficient, the more vortex elements are in the vortex wake.
Note, that for the considered problems we reach absolute efficiency 0.75 . . . 0.79 at 96
cores and 0.62 . . . 0.75 at 228 cores. If we normalize our acceleration to the acceleration of
the code with 0.1 % of sequential code, we obtain efficiency 0.82 . . . 0.92 at 96 cores and
0.75 . . . 0.88 at 228 cores. Finally, we reach 140 . . . 170 times acceleration of the algorithm
at 228 nodes.

8

Kseniia S. Kuzmina, Ilia K. Marchevsky and Evgeniya P. Ryatina

●

●

●

●

●

●

■

■

■

■

■

■

◆

◆

◆

◆

◆

◆

▲

▲

▲

▲

▲

▲

▼

▼

▼

▼

▼

▼

0.815

0.615
0.711
0.745
0.752

12 48 96 144 192 228
np

25

50

75

100

125

150

175

200
Qn

● Amdahl, 0.1%

■ 80,000

◆ 160,000

▲ 320,000

▼ 480,000

Efficiency

Figure 6: Acceleration of the computations obtained for different number of cores for problems with
different parameters on BL2x220c G7

Fig. 7 shows the acceleration of computations on the Claster HPC1 in National Re-
search Center “Kurchatov Institute”. As earlier, the black line shows the acceleration
of the “ideally parallelized” code with 0.1 % sequential code calculated according to the
Amdahl law. For the considered problems we reach absolute efficiency 0.68 . . . 0.76 at 256
cores and 0.30 . . . 0.41 at 1280 cores. If we normalize our acceleration to the acceleration
of the code with 0.1 % sequential code, we obtain efficiency 0.84 . . . 0.94 at 256 cores and
0.68 . . . 0.93 at 1280 cores. Finally, we reach 380 . . . 520 times acceleration of the algorithm
at 1280 nodes.

●

●

●

●

●

●

■

■

■

■

■
■

◆

◆

◆

◆
◆

◆

▲

▲

▲

▲

▲

▲

▼

▼

▼

▼

▼

▼

0.439

0.300
0.336
0.367
0.406

8 256 512 768 1024 1280
np

100

200

300

400

500

600
Qn

● Amdahl, 0.1%

■ 80,000

◆ 160,000

▲ 320,000

▼ 480,000

Figure 7: Acceleration of the computations obtained by different number of cores for problems with
different parameters on HPC1

4.2 Nvidia CUDA and MPI + CUDA parallelization

All the algorithms for the described operations have been adapted for hybrid computer
systems with GPU accelerators. Test simulations were performed by using two GPUs:

GeForce GTX 970 Tesla K40c
Number of multiproc./cores 13/1664 15/2880

DRAM Memory 4 Gb (3.5 Gb) 12 Gb

9

Kseniia S. Kuzmina, Ilia K. Marchevsky and Evgeniya P. Ryatina

Tables 2 and 3 show a comparison of the VM2D code performance on GPUs with its
performance on CPUs. It can be seen that in the framework of VM2D one GPU GeForce
GTX 970 can replace dozens or even hundreds of CPU cores. GPU Tesla K40c replaces
hundreds or even more than 1000 CPU cores.

Table 2: Comparison of performances of GPUs and BL2x220c G7

Acceleration 1 12 48 G970 96 144 192 228 K40
N = 80 000 1 10.2 39.1 58.7 72.3 103.4 127.0 140.1 158.9
N = 480 000 1 10.2 38.6 66.1 75.8 110.3 145.1 171.5 162.6

Table 3: Comparison of performances of GPUs and HPC1

Acceleration 1 8 G970 256 512 768 1024 K40 1280
N = 80 000 1 7.2 127.9 173.3 273.7 331.7 367.2 467.6 468.6
N = 480 000 1 7.3 190.8 192.8 294.0 392.3 463.0 469.0 565.9

It is also possible to perform calculations on several video cards that are located on
different nodes, their communication takes place with the help of MPI. Test calculations
show that if you use two video cards, you can get an acceleration of 1.6 times, and for
three cards — 2.2 times compared with the calculation on a single video card.

5 CONCLUSIONS

Parallel algorithms for VM2D open-source code were implemented using three technolo-
gies: MPI, OpenMP and CUDA. It is shown that ratio between computational complexi-
ties of the operations of the algorithm can vary significantly for different problems state-
ments. Test problems shown that VM2D is efficiently parallelized: we achieve 75 . . . 79%
efficiency of parallelization at 96 CPU cores, 0.68 . . . 0.76% efficiency at 256 cores and
0.30 . . . 0.41% efficiency at 1280 cores. It is shown that the acceleration achieved on one
GPU is comparable to acceleration on hundreds and even thousands of CPU cores. At
the same time, the acceleration of calculations on GPU can be further increased due to
the fact that it is possible to perform calculations on several cards simultaneously.

ACKNOWLEDGEMENTS

The research is supported by the Ministry of Education and Science of the Russian
Federation (project no. 9.2422.2017/PCh), and the Grant of the President of the Russian
Federation for Young Ph.D (project no. MK-743.2018.8).

The authors express their gratitude to Ivannikov Institute for System Programming of
the Russian Academy of Sciences and to National Research Center “Kurchatov Institute”
for providing the computational resources.

10

Kseniia S. Kuzmina, Ilia K. Marchevsky and Evgeniya P. Ryatina

REFERENCES

[1] Mittal, R. and Iaccarino, G. Immersed boundary methods. Annu. Rev. Fluid Mech.
(2005) 37:239–261.

[2] Marchevskii, I.K. and Puzikova, V.V. Numerical simulation of the flow around two
fixed circular airfoils positioned in tandem using the LS-STAG method. J. Mach.
Manuf. Reliab. (2016) 45:130–136.

[3] Cottet, G.-H. and Koumoutsakos, P.D. Vortex Methods: Theory and Practice. Cam-
bridge University Press, 2000.

[4] Saffman, P.G. Vortex Dynamics. Cambridge University Press, 1992.

[5] Lifanov, I.K. Singular Integral Equations and Discrete Vortices. Utrecht: VSP, 1996.

[6] Lighthill, M. Boundary Layer Theory. ed. J. Rosenhead, Oxford: OUP, Introduction,
1963, pp. 54–61.

[7] Dynnikova, G.Ya. Vortex motion in two-dimensional viscous fluid flows. Fluid Dy-
namics. (2003) 38:5:670–678.

[8] Kuzmina, K.S., Marchevsky, I.K. and Moreva, V.S. Parallel Implementation of Vortex
Element Method on CPUs and GPUs. Procedia Comp. Science. (2015) 66:73–82.

[9] Kuzmina, K.S., Marchevsky I.K. and Ryatina E.P. Open Source Code for 2D In-
compressible Flow Simulation by Using Meshless Lagrangian Vortex Methods. IEEE
Xplore Digital Library. Ivannikov ISPRAS Open Conference. (2017) 97–103.

[10] Kuzmina, K.S., Marchevskii, I.K., Moreva, V.S. and Ryatina, E.P. Numerical scheme
of the second order of accuracy for vortex methods for incompressible flow simulation
around airfoils. Russian Aeronautics. (2017) 60:3:398–405.

[11] Kuzmina, K.S., Marchevskii, I.K. and Moreva, V.S. Vortex Sheet Intensity Computa-
tion in Incompressible Flow Simulation Around an Airfoil by Using Vortex Methods.
Mathematical Models and Computer Simulations. (2018) 10:3:276–287.

[12] Kuzmina, K.S., Marchevsky, I.K. and Ryatina, E.P., Exact analytical formulae for
linearly distributed vortex and source sheets influence computation in 2D vortex
methods. Journal of Physics: Conference Series., (2017) 918:012013.

[13] Kuzmina, K.S., Marchevsky, I.K., Milani, D. and Ryatina, E.P. Accuracy compar-
ison of different approaches for vortex sheet discretization on the airfoil in vortex
particles method. Proc. of 5th Int. Conf. on Particle-Based Methods, Particles 2017
(Hannover, Germany). (2017) 691–702.

[14] Kempka, S.N., Glass, M.W., Peery, J.S. and Strickland, J.H. Accuracy considerations
for implementing velocity boundary conditions in vorticity formulations. Sandia Re-
port Sand 96-0583 UC-700, 1996.

11

Kseniia S. Kuzmina, Ilia K. Marchevsky and Evgeniya P. Ryatina

[15] Dynnikova, G.Ya. An analog of the Bernoulli and Cauchy – Lagrange integrals for a
time-dependent vortex flow of an ideal incompressible fluid. Fluid Dynamics. (2000)
35:1:24–32.

[16] Bearman, P.W. and Zdravkovich, M.M. Flow around a circular cylinder near a plane
boundary. Journal of Fluid Mechanics. (1978) 89:1:33–47.

[17] Lei, C., Cheng, L., and Kavanagh, K. Re-examination of the effect of a plane bound-
ary on force and vortex shedding of a circular cylinder. Journal of Wind Engineering
and Industrial Aerodynamics. (1999) 80:3:263–286.

12

