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Abstract. The aim of the paper is to investigate the geometric filtration by Proper
Orthogonal Decomposition in order to reduce the dimensionality of the design space in
an aerodynamic shape optimization problem. Thanks to the capability of re-ordering the
data according to decreasing variance, the Proper Orthogonal Decomposition extracts
and filters the basic features of the dataset so as to formulate the optimization problem
into a new, shrunk design space. The capability of the new optimal bases in representing
different airfoil shapes is critically analyzed, as well as the proper choice of the new design
space bounds. Furthermore, an updating algorithm is designed to adapt the basis during
the optimization. A series of optimization results are shown for a two–dimensional test
case by using a genetic algorithm and surrogate-based optimization. Both native geometry
parameterization and the filtered one are used to highlight benefits and drawbacks of the
proposed approach. Results show that, by employing the filtered parameterization, it is
possible to achieve and even enhance the design performance attained with the classical
parameterization, whatever the optimizer employed.

1 Introduction

In the framework of global optimization approaches for aerodynamic design, a shape is
usually parameterized by acting on the design variables (DV) whose number and bounds
generate the design space. However, when increasing the geometry complexity of the
problem at hand, the number of design variables may grow up significantly, giving rise to
the well-known ’curse of dimensionality’[1].

This may hamper the success of the optimization process, as large design spaces may
lead to multi-modal and noisy landscapes. As a consequence, the problem of searching for
a global solution may result hard or even intractable, independently of the search method,
i.e. deterministic or stochastic or meta–heuristic.



DAVIDE CINQUEGRANA, EMILIANO IULIANO

In surrogate-based optimization (SBO), the meta–model that mimics the behavior
of the objective function is made explicitly dependent on the design variables. From
literature, it is known that, whatever the meta–model, a loss in prediction quality is
associated to an increase of dimensionality[2]. On the other hand, sensitivity analysis
often shows that not all the design variables have the same influence on the objective
function behavior. As a matter of fact, a reduction of the design space is envisaged
to preserve the main features of the target function landscape while avoiding the high–
dimensional noise.

Another issue is related to the huge amount of CPU required to face with an industrial
aerodynamic design. Indeed, geometric complexities and non-linear flow features (e.g.,
flow separation, shock waves, shock–boundary layer interaction) still require to use fine
mesh size and large number of CFD iterations to be correctly solved. An even more crucial
bottleneck is represented by the search of a solution with a global algorithm, which may
require a large number of CFD evaluations. Therefore, it is mandatory to reduce the
problem complexity at each level of the design chain by means of the parallelization of
the CFD solver, the usage of surrogate or reduced order models to evaluate the objective
function and the reduction of the design space.

In literature, design space reduction (DSR) is treated with different strategies to shrink
the bounds of the search volume like trust region approaches [3], heuristic, move limits[4],
Variable-Complexity Response Surface Modeling Method (VCRSM), and Concurrent Sub
Space Optimization (CSSO) [5]. For example, VCRSM as proposed by Zahir[6] suggests
a preliminary exploration of the design space with a low fidelity model, then selects the
new reduced bounds with a pattern search coupled with high fidelity simulation and
integration of data. CSSO is a subspace coordination procedure: here the data generated
by the subspace optimizers is not uniformly centered about the current design, but instead
follows the descent path of the subspace optimizers[5, 7]. The common feature of these
techniques is the reduction of the search volume and the associated relieving effect, mostly
if the optimization is driven by surrogate models.

In another perspective, DSR can be viewed also as a reduction of the inherent dimen-
sionality of the problem, i.e. a technique to identify a lower dimension that effectively
and efficiently drives the problem at hand. The aim is to learn from a given sampling
set of the original design space and to map it to a lower dimensional space while keeping
the most important features of the original design problem. Various strategies have been
proposed in literature to seek an equivalent lower dimensional representation, even if some
losses are introduced. Proper orthogonal decomposition (POD), kernel POD, locally lin-
ear embedding, Laplacian eigenmaps, isomap and semidefinite embedding are just some
examples [8, 9].

The aim of the paper is to apply a geometric filter on the design variables set by per-
forming a variance analysis based on Proper Orthogonal Decomposition. Exploiting the
intrinsic properties of POD, the geometric data are re-arranged and ranked according to
their relative importance, thus deriving a new parameterization in a transformed space.
The beneficial aspect of this transformation is two–fold as it brings a quantitative and
qualitative filtering at the same time: first, as a result of POD ranking and truncation,
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the new design space is shrunk and the effective size of the problem at hand is reduced
(quantitative filtering); second, the new geometric modes are orthogonal and, hence, inde-
pendent [10]: this removes all possible spurious coupling between original design variables
(qualitative filtering). The advantages of the linear technique to data reduction have been
investigated in recent literature, showing good performances if compared to other non lin-
ear techniques [11, 8]. Concerning how to feed the filter, recent works proposed to set up
the training geometry database with airfoil shapes from aeronautical libraries [12, 13] and,
specifically, to select them according to the operating points of the optimization problem.

The present authors already proposed the application of the DSR technique to two- and
three-dimensional surrogate-based optimization: in particular, in the first investigation
[14] the optimization of an airfoil in subsonic viscous flow was studied; in the second[15],
the DSR was applied to an industrial case, i.e. a wing shape optimization in multi-point,
transonic and viscous conditions. The last application represents quite a novelty with
respect to recent papers [16, 17, 18, 12].

In this perspective, the present paper represents a step inwards the full understanding
of its potential and exploitation. Indeed, a more pronounced emphasis is put on a twofold
aspect: on one hand, the reduced design variables setting and adaptation during the opti-
mization process, thus adjusting the reduced basis with the ongoing search results; on the
other hand, addressing the low dimensional mapping in a more local sense, that is driving
it to promising and narrow regions of the reduced design space. Both improvements are
effective in confining the randomness and the dispersion of the initial geometry database,
obtained through a pseudo–random Latin Hypercube Sampling.

The paper is organized as follows: the next section will provide details about the DSR
technique based on POD; afterwards, the optimization process and the POD basis updat-
ing strategy are presented; finally, a quite extensive section is devoted to the presentation
of the results of the GA-based and surrogate-based optimizations.

2 Geometric Data Reduction by POD

Proper Orthogonal Decomposition is a technique to compute a linear basis of vectors
which is optimal in some sense. In other words, it provides the best representation of
a given dataset in a different reference frame originated by the POD basis vectors. A
detailed mathematical formulation for the derivation can be found in [19, 20]. Here, the
fundamental concepts and relations are recalled. The dataset is organized in a snapshot
matrix S = {S1, S2, . . . , Sn}, which collects the available data in a column–wise manner,
where n is the number of experiments or numerical simulations. Here, it is assumed that
each snapshot element Sk is obtained by varying a set of parameters w = {w1, . . . , wm}
which, in the present case, represent the design variables of the optimization problem at
hand. The combination of the sets {w1,w2, . . . ,wn} and {S1, S2, . . . , Sn} represent the
so-called training dataset of database.

Computing a POD basis consists in searching a set of orthonormal vectors φ1,φ2, . . . ,φn
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such that the following relation holds:

Sj = S̄ +
n∑
i=1

αi(wj)φi = S̄ +
n̂∑
i=1

αi(wj)φi + εjn̂ = S̄ +
n̂∑
i=1

(Sj, φi)φi + εjn̂

where S̄ is a base solution [21, 20] (i.e. an average field), the scalars αi are the unknown
POD coefficients, n̂ ≤ n and the error ε is optimal”, i.e. the smallest possible. Indeed, for
any set of orthonormal vectors ψ1,ψ2, . . . ,ψn the optimality condition is expressed as:

εn̂ =
n∑
j=1

Sj − S̄ −
n̂∑
i=1

(Sj, φi)φi ≤
n∑
j=1

Sj − S̄ −
n̂∑
i=1

(Sj, ψi)ψi

In practice, the POD decomposition is obtained by taking the singular value decomposi-
tion (SVD) of P = {S1 − S̄, S2 − S̄, . . . , Sn − S̄}:

P = UΣVT = U


σ1 · · · 0
...

. . .
...

0 · · · σM
0 · · · 0

VT (1)

with the singular values σ1 ≥ σ2 ≥ . . . ≥ σM ≥ 0. The POD basis vectors, also called
POD modes or eigen–functions, are the first n column vectors of the matrix U, while the
POD coefficients αi(wj) are obtained by projecting the snapshots onto the POD modes:

αi(wj) = (Sj − S̄, φi) (2)

Usually, the singular values become small rapidly and a small number of basis vectors
are adequate to reconstruct and approximate the snapshots as they preserve the most
significant ensemble energy contribution. In this way, POD provides an efficient mean of
capturing the dominant features of a multi–degree of freedom system and representing it
to the desired precision by using the relevant set of modes. The reduced order model is
derived by projecting the original model onto a reduced space spanned by only some of
the proper orthogonal modes or POD eigenfunctions. This process realizes a kind of lossy
data compression by truncating the POD sum to n̂ < n

Sj ' S̄ +
n̂∑
i=1

αi(wj)φi (3)

A criterion to truncate the sum in equation 3 is usually based on the total information
content, which is given by the following equation:

En̂ =

∑n̂
j=1 σ

2
j∑n

i=1 σ
2
i

(4)
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Of course, if n̂ = n then En̂ is equal to unity and all modes are preserved. The amount of
Ep can be defined as a spectral energy content. Often the threshold value is set to 0.99,
i.e. 99% of the information content is retained, so that En̂ >= 0.99 and En̂−1 < 0.99.
The complex, non linear behavior of the original model (e.g., a CFD parametric model)
is thus transformed to a linear sum that is still able to optimally represent the original
dataset while employing a reduced number of degrees of freedom (i.e. n̂ scalars αk and
modes φk, k = 1, . . . , n̂).

In the present context, the POD approximation is applied to geometry coordinates
data (i.e., airfoil or wing shapes) coming from a classical geometry parameterization, here
referred to as native” parameterization. Given m the dimension of the design space and
a set of n design vectors {w1,w2, . . . ,wn}, the geometry parameterization can be seen
as a correspondence which transforms a generic design vector in a set of p geometric
coordinates:

w ∈ Rm → s ∈ Rp

It is assumed that the parametric geometry is defined as a finite set (of size p) of (x, y, z)
coordinates in a Cartesian space and that the snapshot vector s contains only the z-
coordinate as the (x, y) data are fixed when varying the design vector w:

si = s(wi) = {zi,1, . . . , zi,p}T

Once built the snapshot matrix S = [s1, . . . , sn], it is decomposed into a mean and a
deviation matrices, as mentioned above :

S = S̄ + ΦA

where S̄ = { 1
n

∑n
1 si, . . . ,

1
n

∑n
1 si} is the mean matrix having the same column replicated

n times, Φ is the POD modes matrix containing n spatial eigen–functions of the matrix
C = (S− S̄)T (S− S̄) and A is the matrix of the corresponding scalar coefficients

A = {a1, . . . , an} (5)

a1 = {α1(w1), . . . , α1(wn)}T (6)
...

an = {αn(w1), . . . , αn(wn)}T

In analogy to what has been explained above, a reduced number of bases can be selected
in order to meet a minimum required information content. Hence, the original snapshot
vectors can be approximated by:

S ≈ S̄ + Φ̃Ã (7)

where Φ̃ and Ã are obtained by Φ and A by considering only the ñ < n first (and hence
most important) basis vectors and corresponding modal coefficients.

This procedure is also referred to as geometric filtration as the most significant com-
ponents of the geometric modification are extracted, so as to neglect possible spurious
effects. Indeed, by condensing the geometric data into the first modes, the core of the
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geometric filtration consists in interpreting the corresponding modal coefficients as trans-
formed design variables. By acting directly on the ñ POD modal coefficients instead of
on the original m design variables, an optimization algorithm can benefit from the di-
mensionality reduction in having ñ < m. As it will be made clearer in the next sections,
the bounds of the newly-defined design variables strongly depends on the composition of
the training dataset and can be set according to engineering considerations concerning
the maximum allowable shapes or in a more smart way, that is adapting them to the
optimization history collected so far.

3 Optimization methods

In the following, two optimization methods are presented which share the common
objective of working onto the space spanned by the POD modes but differ in theoretical
aspects. The first one relies on a genetic algorithm whose evolution is stopped several
times to recompute and update the POD basis; the second is assisted by local surrogate
models and trust region approaches to accelerate the search process.

3.1 GA-based optimization

In this section the shape optimization method assisted by POD–driven design space
reduction is introduced. For the sake of clarity, it is conceived as two nested loops: the
outer loop is devoted to the POD-based geometric filtration, while in the inner loop the
optimization algorithm explores the reduced design space resulting from the outer loop.

The work-flow in figure 1 illustrates the whole optimization process. The procedure
may work in two modes, with and without the POD basis updating stage. In the first
case, the optimization search is stopped after a certain number of generations, a selection
is made among the candidates computed so far, a new training database is obtained and
the eigen–modes are re–computed and updated. In the second case, a single, full–length
optimization is performed on the reduced design space originated by the initial POD basis.
The following steps can be identified:

1. design space initialization: the original design space of size m, generated by the
native design variables, is initially sampled by means of Latin Hypercube Sampling
(LHS) strategy and n samples are collected in the ensemble database {w1, . . . ,wn}
;

2. parameterization: by using the native parameterization, the design space samples
are converted into geometric data and the snapshot matrix S = {s1, . . . , sn} is
collected;

3. geometric filtration: the POD basis of matrix S is computed and the modes φi, i =
1, . . . , n are stored. A reduced design space is generated by the first ñ transformed
design variables αi, i = 1, . . . , n̂. This phase is aimed only at collecting geometry
shapes and generating the POD basis and coefficients, thus it does not foresee any
objective function computation. The truncation of the POD basis is crucial in
reducing the design variables number with respect to the original parameterization.
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Geometries Database (n)

POD

New Design Space (ñ)

q Generations

Selecting DB geometries (n)
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Parameterization
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q<Q?

G.A. Optimization Loop

Figure 1: Optimization Flowchart with POD Updating

4. optimization: this step is devoted to searching a global optimum with an evolu-
tionary algorithm (EA). Given f : s(w) ∈ Rp → f ∈ R the objective function, the
minimization problem is set in the reduced form as

min
α1,...,αn̂

f [s(α1, . . . , αn̂)]

subject to lbi < αi < ubi, i ∈ {1, ..., n̂}

s(α1, . . . , αn̂) = ŝ +
n̂∑
i=1

αiφi

lbi = min
ai

αi

ubi = max
ai

αi

The lower and upper bounds (lbi and ubi) of the reduced design variables αi are
obtained by taking the minimum and maximum value among the elements of the
coefficient vectors ai as specified by equation 5 and 6. The search process is carried
out by means of an evolutionary algorithm from the in-house optimization library
ADGLIB[22, 23]. The selection operator is a fixed-step random walk, while classical
crossover and bit mutation operators are applied to generate new individuals. The
elitist strategy is used to keep the best fit individual within the current population.
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If the POD basis updating is selected, the algorithm is let evolve up to q generations.
Given nq the total number of updates foreseen over the entire loop and Q the total
number of generations to be performed ( a pre–defined parameter of the EA), q is
computed as:

q =
Q

nq + 1
(8)

5. update check: if POD basis update is selected, the loop continues with step 6;
otherwise, a termination condition occurs;

6. generation check: check if the current number of generations q has exceeded the
total budget Q, if the answer if negative, then n geometries are selected among the
candidates evaluated by the optimizer by using a rank selection with elitism. A new
snapshot matrix S is then collected;

7. geometric filtration update: the POD basis is re–computed on the new training
database and the reduced design variables are updated;

8. new optimization: with a new design space and POD basis, the EA is restarted
(back to step 4) by keeping constant the number of the design variables. In this
new stage of EA optimization, it is possible to read an initial population (the very
first one that was used to train the first POD basis, transformed in the current
design space), or to let to the optimizer sample the new design space from scratch.

The geometric filter synthesizes the available data in a different space with fewer vari-
ables, realizing de facto a new parameterization. This approach differs from literature
approaches[13] where existing libraries of airfoil shapes are employed to feed the filter.
Here, the initial airfoil database is quite general as it is derived by setting the bounds of
the native design space and sampling it, while the only a priori choice is limited to the
baseline airfoil.

The POD basis updating is introduced to avoid an over-dependence of the reduced
design space (and hence of the optimization results) from the initial LHS database. In
fact, as it will be made clearer in the following section, the optimum geometric features
may be too far to be reached with the eigen–modes extracted from a space–filling sampling:
to cope with this, a natural choice would be to enlarge the bounds of the reduced design
space, but the optimization cost would rise with no guarantee to find the global minimum.
As a consequence, feeding the geometric filter with a blend of sub–optimal samples and
randomly chosen candidates provides the DSR model with much more information about
the optimization history and the potential directions of improvement.

3.2 Surrogate-based optimization

In order to save computational time, a surrogate-based optimization approach is also
implemented to replace the GA-based module. The procedure is very similar to the one
described in the previous section, the only differences being in steps 4 to 6. The definition
of the minimization problem is identical but a multi-start surrogate-based local approach
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(SBLO) replaces the evolutionary search. In the following sections, the local approach
will be firstly introduced, then the multi-start procedure will be detailed.

3.2.1 Trust region optimization

In SBLO [24], a trust region approach is used to manage the minimization process
and maintain acceptable accuracy between the surrogate model and the true model. This
is realized by limiting the range over which the surrogate model is trusted according to
a surrogate accuracy indicator. The process iteratively minimizes the surrogate model
prediction by moving the center and modifying the bounds of the trust region. The
surrogate model is trained by means of an outer sampling of predefined size (here, the
samples are the POD modal coefficients). At the end of each approximate minimization,
the candidate optimum point is validated using the true model. If sufficient decrease has
been obtained in the true model, the trust region is re-centered around the candidate
optimum point and the trust region will either shrink, expand, or remain the same size
depending on the accuracy with which the surrogate model predicted the true model
decrease. If sufficient decrease has not been attained, the trust region center is not
updated and the entire trust region shrinks by a user-specified factor. The cycle then
repeats with the construction of a new surrogate model, a minimization, and another
test for sufficient decrease in the true model. This cycle continues until convergence is
attained. The acceptance logic of the k-th iteration step is based on the evaluation of the
so called trust region ratio ρk:

ρk =
f(xkc )− f(xkopt)

f̂(xkc )− f̂(xkopt)
(9)

where xkc is the current trust region center, xkopt is the location of the optimum value

predicted by the surrogate, f is the true response function and f̂ is the surrogate model
prediction. The trust region ratio measures the ratio of the actual improvement to the
improvement predicted by optimization on the surrogate model. According to its value,
the k-th iteration is accepted or not and the trust region is reduced, retained or enlarged.
The following criteria are used here:

• ρk < 0: the surrogate accuracy is poor, the step is rejected and the trust region is
shrunk;

• 0 < ρk < 0.25: the surrogate accuracy is marginal, the step is accepted and the
trust region is shrunk;

• 0.25 < ρk < 0.75: the surrogate accuracy is moderate, the step is accepted and the
trust region is retained;

• 0.75 < ρk < 1.25: the surrogate accuracy is good, the step is accepted and the trust
region is expanded;
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• ρk > 1.25: the surrogate accuracy is moderate, the step is accepted and the trust
region is retained;

Three stopping criteria have been implemented and the search is terminated when at least
one of them is satisfied:

• Maximum number of iterations and trust regions evaluations (=20);

• Minimum size of the trust region (=0.001);

• Minimum evaluation error |f̂(xkopt)− f(xkopt)| = 0.001

3.2.2 Multi-start local optimization

As the SBLO is local in nature, hence it strongly depends on the starting point, a
multi-start procedure has been implemented to provide a global character. Given the set
of training samples, a cluster analysis is performed by using the k -means algorithm [25]
which assign each sample to a specific cluster and computes the location of each cluster
center. As the k -means algorithm requires to know the number of clusters, in the present
study 5 clusters are generated. Finally, each cluster center is used as starting point of
the surrogate-based local approach, so that 5 local optimizations are performed. At the
end of the multi-start process, n geometries are selected among the full set of candidates
evaluated during the optimization by using a roulette wheel algorithm with elitism (i.e.,
the best element of the set is always included). A new snapshot matrix S is then collected
and a new POD basis is computed, so that the procedure described in section 3.1 is
continued from step 7.

4 Results and discussion

The present section discusses the results of a quite extensive numerical test campaign
carried out with the DSR approach. The capability and flexibility of the method in
reconstructing a generic airfoil geometry, the dependence from the size of the training
database, considerations about the choice of the ranges for the reduced design variables
are analyzed in previous works and not show there.

The closing sections 4.1.1 and 4.1.2 are devoted to the detailed description of the DSR
updating strategy driven by GA and SBO evolution history. The aim is to reduce the
randomness and the dispersion of the a priori LHS sampling. It will be shown how this
strategy operates a compression of the volume of search and that this is beneficial for the
optimizer.

4.1 Shape optimization

In this section the shape optimization problem is introduced in terms of design vari-
ables, design points, constraints and objective function. The baseline shape is the NACA
0012 airfoil and the geometry is parameterized by means of a NURBS approach[26].

The flow conditions include prescribed angle of attack AoA, Mach number, Reynolds
number as shown in Table 1. A single design point in subsonic regime is selected and the
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Table 1: Free-stream conditions

M∞ Re∞ AoA[◦]

0.3 6.0× 106 2.0

evaluation of the objective function is carried out by using the Xfoil code by Drela [27], an
high order panel method with fully coupled viscous/inviscid interaction correction. The
laminar to turbulent transition is let free on both upper and lower side of the airfoil.

A classical objective in an aerodynamic shape optimization problem is to maximize
the aerodynamic efficiency, while preserving some geometrical characteristics and aero-
dynamic performance as constraints. Here an equivalent formulation is followed as the
objective is to minimize the inverse of the aerodynamic efficiency with constraints on
minimum airfoil sectional area, minimum pitching moment and an additional constraint
to control the derivative of airfoil curvature. More specifically, the objective function is
defined as:

fobj =

(
Cd + Cd,t + Cd,g

Cl

)
Cd,0
Cl,0

+ max

{
0, 0.01

[
P (χ′)− P (χ′0

]}
(10)

where:

Cd,t = 0.01 max (0, Cmy,0 − Cmy)
Cd,g = max (0, A0 − A)

and Cd,0 = 0.0057 and Cl,0 = 0.233 are the drag and lift coefficients of the NACA 0012 at
the selected subsonic design point, while Cmy,0 = −0.05 is the minimum allowed pitching
moment coefficient. The problem is normalized with respect to the value of the objective
function for the baseline airfoil, which is is equal to 1. The aerodynamic constraint on
pitching moment is formulated as a penalty on drag (Cd,t), thus representing a sort of
trim drag: if the minimum value of the pitching moment is exceeded, the penalty applied
will be 1 drag count per 0.01 in ∆Cm. The geometric constraint (Cd,g) imposes that the
airfoil cross sectional area A should not be smaller than A0 = 0.0822, i.e. the area of the
NACA 0012 airfoil.

Furthermore, an additional constraint is introduced in equation 10 in order to control
geometric oscillations that the NURBS parameterization may introduce. The optimizer
uses a penalty function to activate this constraint when it exceeds a threshold value, even
if it is well know that it might present some difficulties [28]. The penalty is based on the
local airfoil curvature, χ, and its derivative, χ′ with respect to the curvilinear abscissa. A
numerical parameter P(χ′) is used to measure the frequency and magnitude of changes in
curvature over the entire airfoil, defined as:

P (χ′) =

p−1∑
2

[
0.5

(
χ′i+1 − χ′i−1

)]2
(11)
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where p, as mentioned above, is the number of points describing the airfoil shape. The
threshold value is P(χ′0) = 250.0 and it is established from baseline analysis and airfoil
aerodynamics experience.

Two kind of parameterizations are used in the following analyses: the NURBS approach
with 14 control points, referred to as full DV or native parameterization, and the filtered
DSR approach with variable training set size and number of retained modes. The results
of several optimization runs will be shown: each run is performed with the same problem
definition and optimizer parameters but different design spaces. In the following section,
the POD basis updating strategy is introduced.

4.1.1 On–line POD-DSR updating: GA-based optimization

An adaptive approach is proposed in this section to refine the choice of the training
snapshots and update the POD basis iteratively while the optimization process is running.
The aim is to enhance the POD basis by adding new information captured during the EA
evolution and not included in the initial database, thus activating a sort of local search
within the global optimization. Indeed, in evolutionary optimization it is quite common
to discover crucial geometric features along the design path which are recognized as mile-
stones by the optimizer itself. Crossover operator and elitism are just some examples
of how offspring inherit those significant feature from parents. Therefore, when using
POD–DSR during optimization, a natural choice is to update the POD basis to screen
and include newly discovered characteristics into the reduced parameterization.

A first set of tests performed by using the optimization data from DSR-I cases with
n̂ = 8 . Recalling equation 8, the updating frequency nq indicates how often the updating
algorithm is executed while q is the number of generations collected prior to update the
POD basis. Taking as reference Q = 1000 generations, here three different options are
explored:

• nq = 1 and q = Q
nq+1

= Q
2

• nq = 3 and q = Q
nq+1

= Q
4

• nq = 7 and q = Q
nq+1

= Q
8

As explained in section 3 and referring also to figure 1, the POD–DSR update is an on–
line approach. When the evolution has reached q generations , a selection of n candidates
among the collected dataset is made by means of a roulette wheel with elitism (i.e., the
best element of the database is always included), based on the objective function values,
and the resulting geometry population is converted into the new snapshot matrix. Then,
the POD basis is recomputed and the updated reduced design variables/design space are
used for another q generations. The selection by means of roulette wheel avoids to search a
narrow design space, prone to local minima entrapment, as the selected subset is broad in
terms of objective function values. The candidates selection and POD–DSR basis update
is repeated every q generations, according to the updating frequencies nq. The roulette
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wheel approach introduces a further source of randomness that may affect the results,
hence for each q the optimization tests are repeated 5 times in order to measure the mean
and standard deviation of the minimum fobj.

Figure 2 illustrates the histories of the minimum objective function: the gray curve is
the envelope of the DSR-I run with n̂=8 and represents the reference level. Depending
on the value of q, the POD–DSR updating histories (averaged over 5 repetitions) depart
from this curve at the first updating point: for instance, the green curve represent the case
with nq = 1 and starts from 15,000 evaluated elements, that is from Q

2
with Q = 1000

and a population size of 30. Likewise, blue and red curves are representative of cases
with nq = 3 and nq = 7, respectively, and deviates from the reference history at 7,500
and 3,750 elements. The POD–DSR curves are depicted as piecewise linear for ease of
representation as they connect the best values found before each POD basis update. The
standard deviation of minimum fobj over 5 repetitions is also reported at updating points
as error bars.
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Figure 2: Updating POD–DSR with n̂ = 8

By increasing q, the average minimum fobj decreases significantly with respect to the
DSR-I test results up to reach the minimum of the full NURBS optimization. At the
same time, looking at the standard deviation, the random component seems to play
a considerable role and this can be related to the geometry selection algorithm. For
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example, while the average of the POD–DSR run with nq = 7 is slightly worse than the
full approach, the variance over the repetitions is quite large as the updating strategy
may perform better or worse than DSR-I run with almost the same probability.

In order to assess the role played by the selection algorithm in the updating step,
figure 3 shows the empirical cumulative distribution function of fobj over the first 15,000
elements evaluated by the optimizer. Values with fobj >> 1 indicate strong violations
of the curvature constraint, i.e. completely unfeasible and highly wavy shapes. The plot
compares the distribution of fobj at an intermediate point of the optimization history with
no update (nq = 1), two updates (nq = 3) and four updates (nq = 7). The figure shows
that the probability to have fobj < 1 (representing the baseline performance) is 30% for
q = 500, 38% for q = 250 and 65% for q = 125: a more frequent update implies an
improvement of the quality of the population while preserving the diversity.
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Figure 3: Empirical cumulative distribution function

Table 2 resumes the aerodynamic performance of the best airfoils found at each repe-
tition of the highest updating frequency case (q = 0.125Q).

The relative information content associated to the i-th reduced DV is σ2
i , i.e. the

variance retained by the corresponding mode φi, and it is associated to the product
< α2

i >= aia
T
i product, hence strictly linked to the DSR DV ranges. For that reason,

the higher the variance of the modes, the larger the design space ranges associated to
that modes. After the repeated POD updating process, some noticeable differences with
respect to the case where no update is applied can be observed: the average airfoil, S̄, is
no longer symmetrical; the set of eigenvectors Φ is fed with enhanced geometric features
and synthesizes better shapes as showed in Figure 3; smaller variance is related to each
mode, i.e. the ranges of variation of the new DVs are shrunk.
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Table 2: Objective function and aerodynamic data of best airfoils for nq = 7 POD–DSR optimization,
5 repetitions

Run ID fobj Cl Cd[dc] Cm
Cl

Cd
P (χ′)− P (χ′0)

Run 1 0.4033 0.4401 43.1 -0.0499 102.03 2.10
Run 2 0.4151 0.4187 42.2 -0.0444 99.12 1.14
Run 3 0.4277 0.3986 41.4 -0.0409 96.18 1.12
Run 4 0.4041 0.4474 43.9 -0.0500 101.81 -4.01
Run 5 0.4021 0.4425 43.2 -0.0500 102.32 -3.01

In order to clarify how the variance σ2
i is reducing after POD updates, figure 6 shows

the cumulative information content of the POD basis at each update step. The data
refer to a single run for each value of q, selected among the 5 repetitions. By increasing
the number of updates, the first modes are able to explain a greater amount of the data
variance, thus allowing for a reduction of the effective dimensions of the problem while
the optimization is in progress.
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Figure 4: Information content during the DSR update

Resuming the discussion in the previous section, it is interesting to verify how the
reduced design space volume changes when updating the POD basis. To this aim, Fig-
ure 5 shows the averaged (over the five optimization repetitions) hyper–volume ratio
ν(j, n̂)/ν(0, n̂) with n̂ = 8, j ranging in {0, nq} and q = (0.125, 0.25, 0.5) · Q: at each
update j, the volume contracts at constant rate and, increasing the updating frequency,
it becomes even smaller. To sum up, figures 3, 6 and 5 provide three different views of the
same notion: the data–driven update pushes the search of the global optimum in more
local and promising regions of the design space.

4.1.2 On–line POD-DSR updating: SBO optimization

In this section the results obtained with the surrogate-based optimization (section 3.2)
are shown. Starting from the same training database of 140 airfoil geometries, the process
is described in Figure 1, where the GA optimizer is replaced by the multi-start surrogate-
based (SB) local optimizer.
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Figure 5: Volume ratio with POD updating

The number of reduced design variables (8) is kept equal to the previous case while
the number of POD basis updates is increased up to 20. In order to obtain statistical
information, each run is repeated five times. Figure 6(a) shows the evolution of minimum
value of fobj, evaluated with the aerodynamic solver, as a function of the number of
samples evaluated during the process. The SBO curve (blue line) is the average of fobj
over the five repetition and it is characterized by a standard deviation on both axes: on
the y-axis the deviation of the fobj values due to repetitions is reported, while on the
x-axis the deviation is due to the fact that the number of evaluated samples in each SBO
optimization stage is not constant with each repetition. In average, the SBO is bounded
by the GA-based optimizations with (red curve) and without (black curve) updating.
Moreover, the progress towards the optimum location is somewhat accelerated in the first
steps with respect to the GA-based optimization and then tends to reach a plateau around
a sub-optimal value.

Figure 6(b) shows the compression of design space volume obtained with SBO and
compared to DSR GA-based optimization. With SBO, the POD update steps are in-
creased, hence the absolute value reached at the end of the optimization is well below
the GA approach. Furthermore, comparing the volume compression level at fixed update
step, it is evident that the SBO proceeds faster than GA.

5 Conclusions

The work proposed an investigation on Design Space Reduction (DSR) by means of
POD technique, aiming at reducing the design variables number in a shape optimization
problem.
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Figure 6: Results of SBO with POD updating

Introducing an updating algorithm of the POD basis, driven by a selection of data com-
ing from the on–going optimization, some weak points emerged by previous investigations
can be improved and optimal results have been shown.

The two–dimensional test case, due to its relatively cheap computational cost, has
allowed a detailed investigation to prove the capability of the reduced parameterization
involved in the optimization frame, conducted with both GA-based and SBO approach,
showing promising results.
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