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Abstract. In this work, we review the potentially higher accuracy of the SBP schemes
using Gauss nodes instead of Gauss-Lobatto nodes for the Navier-Stokes equations. To
gain additional insight, we carry out a comparative Fourier type analysis for advection-
diffusion equations discretized by the DG scheme on Gauss and Gauss-Lobatto nodes
and two variants of viscous flux discretizations. Furthermore, the SBP property of DG
schemes is used to construct a well-balanced and entropy conservative scheme on the
classical Gauss nodes for the shallow water equations.

1 INTRODUCTION

Originating from the context of finite difference schemes, the summation-by-parts
(SBP) property has been used to construct conservative and robust numerical meth-
ods for CFD simulations. By the special construction of SBP finite difference schemes,
these methods mimic certain properties of the continuous equations in a similar man-
ner as variational schemes such as Galerkin methods. Originally, the nodal sets in the
construction of SBP schemes were chosen to contain a sufficient amount of boundary
nodes. Recently, the SBP framework has been extended to nodal schemes on exclusively
interior nodal sets such as discontinuous Galerkin (DG) schemes on Gauss points in one
space dimension or on tensor-product grids, as well as triangular grid DG methods. SBP
schemes are successfully applied to split-form equations which are used to establish certain
secondary balances, e.g. regarding kinetic energy, either on nodal sets with a sufficient
number of boundary nodes or on exclusively interior nodal sets. For specific problems,
higher accuracy of the SBP schemes using Gauss nodes may be observed due to their
higher degree of exactness for the corresponding quadrature rule. Here, we will review a
result for a non-linear accoustic pressure wave. To gain additional insight, we carry out a
comparative Fourier type analysis for advection-diffusion equations discretized by the DG
scheme on Gauss and Gauss-Lobatto nodes and two variants of viscous flux discretiza-
tions. Although the quadrature rules on interior nodes have a higher degree of exactness,
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split-form equations require additional boundary terms in order to obtain a consistent
and conservative scheme, see e.g. [1]. The necessity to include boundary correction terms
may be perceived as a drawback of exclusively interior nodes such as Gauss points. It is
not a priori clear, which types of split forms still lead to conservation of both the primary
conserved quantities as well as conservation of the targeted secondary ones. Here, we will
show that the approach in [1] used to achieve kinetic energy preservation carries over to
entropy preservation for the shallow water equations in skew-symmetric form, where the
total energy is chosen as the entropy function.

2 THE DG SCHEME IN 1D IN SBP FRAMEWORK

Given a scalar hyperbolic conservation law in one space dimension

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0, t > 0, x ∈ Ω = [a, b] ⊂ R, (1)

we generally obtain the DG scheme in weak form by multiplying the conservation law
(1) with polynomial test functions on each grid cell and applying partial integration to
the term containing the flux f . As the DG solution allows for discontinuities across
cell boundaries, the flux evaluations on the boundaries are replaced by evaluations of a
numerical flux function. In addition, integration is generally carried out by numerical
quadrature rules.

As shown in [1], after a second partial integration, we obtain the strong form of the
DG discretization in cell-wise fashion, transformed to a reference cell I = [−1, 1] with
reference coordinate ξ ∈ I. This semi-discrete DG scheme reads

∆x

2

du

dt
+Df = M−1[(fh − f ∗)L]1−1. (2)

Here, ∆x is the cell size, the solution vector u = (u1, . . . , uN+1)T collects nodal values of
the approximate solution at N+1 nodal points within a DG cell, i.e. uj ≈ u (x(ξj), t), and
the vector of flux values f is given by f = (f1, . . . , fN+1)T with fj = f(uj). Furthermore,
fh denotes an interpolation of the nonlinear function f(u) at the DG nodes and f ∗ the
numerical flux function. Using Lagrange polynomials Lk(ξ) as the DG basis functions,
the vector valued function L is given by L(ξ) = (L1(ξ), . . . , LN+1(ξ))T and the matrices

D and M are defined by their entries Djk = L′k(ξj) and Mjk =
∫ 1

−1
LjLkdξ = Mkj.

According to [2], Definition 2, a scheme of the form (2) is an SBP scheme, or else, the
matrix D is an SBP operator, if the subsequent conditions are fulfilled.

1. The matrix D is an approximation to ∂
∂ξ

with D ξj = jξj−1 for all 0 ≤ j ≤ q,

where q denotes the degree of the approximation to the first derivative and ξj =

(ξj1, . . . , ξ
j
N+1)T .

2. The matrix M is symmetric and positive definite.

3. Integration by parts is mimicked by M D+DTM = B = BT , where B is an interface

and boundary operator with the property (ξl)TB ξm = [ξl+m]1−1 for all 0 ≤ l,m ≤ r,

2
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where r ≥ q denotes the degree of the SAT terms used for imposition of boundary
and interface conditions.

For the DG scheme (2) written for a spatial variable ξ on the reference cell [−1, 1] we
now have the following SBP property, see [1]. The matrix D approximates ∂

∂ξ
to degree

q = N and the degree of B is r = q = N as well. Furthermore, given a function g(ξ) with
point-wise values g, the interface and boundary operator B acts on g as

B g = [ghL]1−1,

where gh =
∑N+1

j=1 gjLj(ξ) denotes polynomial interpolation of the point-wise values g.

Furthermore, the entries of B are given by Bjk = [LjLk]
1
−1.

In case of Gauss-Lobatto (GL) nodes, the matrix B is simply given by

B
GL

= diag{−1, 0, . . . , 0, 1} .

For the classical Gauss nodes (G) the DG schemes of order N = 1 and N = 2 yield

B
G,N=1

= diag{−
√

3,
√

3}, B
G,N=2

=

 −
1
ξ3

1−ξ2
ξ3

0
1−ξ2
ξ3

0 ξ2−1
ξ3

0 ξ2−1
ξ3

1
ξ3

, ξ =

√
3

5
.

If the chosen quadrature rule exactly integrates polynomials of degree 2N , e.g. for
Gauss nodes, we have Mjk = δjkωj due to exact integration of the integrals. Hence, M
is diagonal in this case and D is called a diagonal-norm SBP operator. Non-diagonal
matrices M lead to so-called non-diagonal norm SBP operators. However, if Gauss-
Lobatto quadrature is used to compute the mass matrix, we obtain a diagonal mass
matrix with Mjk = δjkωj and hence a diagonal norm SBP operator. This is also referred
to as mass lumping.

Choosing the classical Gauss nodes which do not contain the interval end points ξ = −1
and ξ = 1 yields exact integration of polynomials up to degree 2N + 1. Due to the
improved accuracy of the resulting DG scheme, these points might be preferred to the
Gauss-Lobatto variant with mass lumping. Higher efficiency of Gauss nodes especially
for a non-linear example based on the two-dimensional Euler equations is numerically
demonstrated in [3]. However, as also stated in [3], in addition to the lower cost based on
the fact that boundary interpolation is not required, the DG scheme on Gauss-Lobatto
nodes also allows larger time steps in case of explicit time integration. Time steps may
be taken roughly twice as large in comparison to Gauss nodes as shown in [4]. Further
subtleties arise as Gauss integration may increase robustness for non-linear problems and
underresolved simulations, see e.g. [4, 5]. Hence, the question of efficiency will depend on
the specific application including accuracy requirements.

3
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3 AN EXAMPLE OF INCREASED ACCURACY FOR GAUSS NODES

The following test case studied in [6, 1] is based on the compressible Navier-Stokes
equations. The equations to be solved are given by

∂

∂t
U +

∂

∂x
F (U) =

∂

∂x
F visc(U,Ux),

where the conservative quantities are collected in U = (ρ, ρv, ρe)T , containing the density
ρ, the velocity v and the specific total energy e. The inviscid fluxes are given by F (U) =

(ρv, ρv2 + p, v(ρe+ p))
T

, with p = (γ − 1)ρ(e − v2/2) the pressure and F visc(U,Ux) =(
0, µ4

3
vx, µ

4
3
vvx + kTx

)T
contains the viscous fluxes. Herein, the viscosity coefficient µ =

µ(T ) possibly depends on the temperature T = γ
cp
e, where cp is the specific heat at

constant pressure. The head conduction coefficient is furthermore given by k = cpµ

Pr
, with

the Prandtl number Pr. The initial conditions for the acoustic pressure wave are given
by the initial density, velocity and pressure distribution

ρ(x, 0) = 1, v(x, 0) = 1, p(x, 0) = 1 + 0.1 sin(2πx)

on the computational domain Ω = [0, 1] with periodic boundary conditions. The viscosity
coefficient is set to µ = 0.002 and the Prandtl number is Pr = 0.72. The viscous terms are
discretized by the BR2 approach developed by Bassi and Rebay, see [7]. The numerical
computations are carried out until tend = 20 to study long time integration. Fig. 1 shows
the output of the kinetic energy preserving, skew-symmetric DG schemes for N = 1 in
case of Gauss as well as Gauss-Lobatto nodes as specified in [1].
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Figure 1: DG scheme using skew-symmetric terms for N = 1, Gauss (40 cells) vs. Gauss-Lobatto nodes
(80 cells) using kinetic energy preserving flux f∗

C . Left: pressure. Right: kinetic energy.

In a comparison with a reference solution obtained by the standard DG scheme for
a polynomial degree N = 3 and 500 cells, the Gauss-Lobatto variant clearly is not as
accurate as the Gauss variant on the coarser grid as shown in Fig. 1 where the DG
solution with Gauss nodes almost cannot be distinguished from the reference solution.
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4 FOURIER ANALYSIS

We will now study the increased accuracy for Gauss nodes via a Fourier analysis carried
out on a simplified linear model. This simplified model equation is naturally given by a
linear advection-diffusion equation with a small diffusion coefficient ε > 0. For a linear
advection-diffusion equation of the form

ut + ux = εuxx, x ∈ [0, 2π], t > 0,

u(x, 0) = eiωx, x ∈ [0, 2π],

supplemented by periodic boundary conditions, the exact solution is given by

u(x, t) = e−(iω+εω2)teiωx . (3)

A standard DG discretization based on the corresponding system of first order PDEs,

ut + ux = εqx, ,

q = ux, (4)

is then given by

∆x

2
ut +Du− εD q = M−1

(
[(uh − u∗adv)L]1−1 − ε[(qh − q∗)L]1−1

)
,

∆x

2
q −Du = −M−1[(uh − u∗)L]1−1 .

As numerical flux functions, an upwind flux u∗adv = u− is chosen for the advective term,
while the viscous term is discretized by either the BR2 fluxes q∗ = 1

2
(q− + q+) and

u∗ = 1
2
(u− + u+) or the LDG approach q∗ = q+ and u∗ = u−.

A Fourier analysis, as carried out in [8, 9], assumes a uniform grid with periodic
boundary conditions. On the grid cell Cm, the numerical solution is assumed to be of the
form

um(t) = û(t)eiωxm . (5)

On the other hand, the DG scheme (4) can be written as

dum
dt

=
1

∆x

(
A

1
um + A

2
um−1

)
− ε

∆x2

(
A

3
um−2 + A

4
um−1 + A

5
um + A

6
um+1 + A

7
um+2

)
. (6)

Substituting (5) into (6) yields the ODE

dû

dt
= G û ,

5
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with the amplification matrix

G =
1

∆x

(
A

1
+ A

2
e−iω∆x

)
− ε

∆x2

(
A

3
e−2iω∆x + A

4
e−iω∆x + A

5
+ A

6
eiω∆x + A

7
e2iω∆x

)
.

An explicit representation of the DG solution may now be obtained by computing the
eigenvalues and eigenvectors of G. Differences may be expected for choosing Gauss or
Gauss-Lobatto nodes as well as depending on the numerical flux functions. For N = 1,
using symbolic computations with Mathematica, we obtain the following eigenvalues.
Gauss nodes, LDG:

λ1 = −(i+ εω)ω − ω4

72
∆x3 +

ω5

540
(3i+ εω)∆x4 +O(∆x5)

λ2 = − 36ε

∆x2
− 6

∆x
+ 3(i+ εω)ω +O(∆x)

Gauss-Lobatto nodes, LDG:

λ1 = −(i+ εω)ω +
ω3

6
(i+ 2εω)∆x2 − ω4

8
∆x3 +O(∆x4)

λ2 = − 4ε

∆x2
− 2

∆x
+ (i− εω)ω +O(∆x2)

Gauss nodes, BR2:

λ1 = −(i+ εω)ω − ω4

12
ε∆x2 +

ω4

72
(i− 2εω)2∆x3 +O(∆x4)

λ2 = − 6

∆x
+ 3(i− 3εω)ω +O(∆x)

Gauss-Lobatto nodes, BR2:

λ1 = −(i+ εω)ω +
ω3

12
(2i+ εω)∆x2 +

ω4

8
∆x3 +O(∆x4)

λ2 = − 2

∆x
+ (i− εω)ω +O(∆x2)

We may observe that for ∆x sufficiently small, the eigenvalue λ2 has negative real
part and |Re(λ2)| increases with decreasing cell size ∆x. The corresponding term in
the ODE solution is thus damped out in time. In addition, for the Gauss variants,
|Re(λ2)| is larger in comparison to the corresponding Gauss-Lobatto variant, suggesting
increased stiffness of the ODE for Gauss nodes. Regarding the exact solution (3), we need
λ1 = −(i+εω)ω+O(∆x) for consistency, which is fulfilled by all of the above schemes. For
the LDG scheme, a difference in accuracy is manifested by the fact that λ1 is an O(∆x3)
approximation to −(i + εω)ω for Gauss nodes while the approximation is only of order
O(∆x2) for Gauss-Lobatto nodes. For the BR2 scheme, λ1 is an O(∆x2) approximation
of −(i+ εω)ω in both cases. However, for the Gauss variant, the second order term nearly
vanishes for the advection-dominated situation ε� 1, thus again resulting in potentially
higher accuracy of the DG scheme on Gauss nodes.

6
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5 ENTROPY PRESERVINGWELL-BALANCEDDG SCHEMES ONGAUSS
NODES FOR SHALLOW WATER FLOW

Though sufficient accuracy ot the numerical solution is of crucial importance and may
be achieved at a lower computational cost for Gauss nodes, removing the cell boundary
nodes from the nodal set may prevent other advantageous properties of the discretization.
While classical SBP schemes including boundary nodes are successfully applied to split-
form PDEs to guarantee the preservation of secondary quantities, the general viability
of generalized SBP schemes on interior node distributions still needs to be clarified in
this regard. In [10], the DG scheme on Gauss-Lobatto nodes is used to construct an
entropy preserving numerical method for the shallow water equations with is provably
well-balanced, i.e. preserves lake at rest stationary solutions. Furthermore, based on
the so-called correction procedure via reconstruction (CPR), generalized SBP schemes
with this property have recently been constructed in [11]. In the following, we derive
an entropy preserving, well-balanced DG scheme on Gauss nodes for the shallow water
equations along the investigations in [10].

5.1 Skew-symmetric formulation of the shallow water equations

The classical conservative form of the shallow water equations with non-constant bot-
tom topography is given by

ht + (hv)x = 0, (7)

(hv)t +

(
hv2 +

1

2
gh2

)
x

= −ghbx, (8)

where h denotes the water height above the bottom elevation b, while g denotes the
gravitational constant and v the flow velocity. Using product rules, it is possible to derive
from the above equations the skew-symmetric formulation of the momentum equation

1

2
[(hv)t + hvt] +

1

2

[
(hv2)x + hvvx

]
+ gh(h+ b)x = 0. (9)

In [10], this formulation is used to derive an entropy preserving, well-balanced DG scheme
on Gauss-Lobatto nodes using the summation-by parts property. In this work, we show
that the same derivations can be carried out for the classical Gauss nodes. Hereby, entropy
preservation refers to the preservation of total energy e = k + p, composed of the kinetic
energy k = 1

2
hv2 and the potential energy p = 1

2
gh2 +ghb. The total energy represents an

entropy function for the shallow water equations. Setting u1 = h und u2 = h v we obtain
the DG scheme

∆x

2

du1

dt
+Df

1
= M−1[(f1,h − f ∗1 )L]1−1 , (10)

∆x

2

1

2

(
du2

dt
+ h

dv

dt

)
+

1

2

(
Dhv2 + hv Dv

)
+ ghD(h+ b) = M−1[(kh − k∗)L]1−1, (11)

where kh and k∗ are not yet specified.

7
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Multiplying the above semi-discrete continuity equation by 1
2
v and adding this to the

skew-symmetric momentum equation yields, due to time continuity,

∆x

2

du2

dt
+Df

2
+

1

2
shv,v +

g

2
sh,h + ghD b

= M−1

(
[(kh − k∗)L]1−1 +

1

2
v[(f1,h − f ∗1 )L]1−1

)
, (12)

where shv,v = −Dhv2 + hv Dv + v D hv and sh,h = −Dh2 + 2hDh.

5.2 Mass and momentum balance

Now, the semi-discrete continuity equation is given precisely by the standard DG
scheme, hence mass preservation is guaranteed.

For the momentum balance we consider the discrete terms sα,β = −Dαβ + αD β +
β Dα mimicking the product rule. We have

1TM sα,β = 1TM
(
−Dαβ + αD β + β Dα

)
= 1T

[(
DTM −B

)
αβ + α

(
B −DTM

)
β + βM Dα

]
= −1TB αβ + αT B β . (13)

In case of interior node distributions, the boundary matrices B are generally not diagonal

and 1TM sα,β 6= 0. Therefore, boundary correction terms have to be added to the right-

hand side of the DG scheme. We have 1TM shv,v = 1TM sv,hv = −1TB hv2 + vT B f
1

and

1TM sh,h = −1TB h2 + hT B h.
From (12) we derive that for constant bottom topography, D b = 0, the contribution

of the volume terms to the change of momentum within a DG cell sums up to

1TM

(
Df

2
+

1

2
shv,v +

g

2
sh,h

)
=

1

2
1TB hv2 +

1

2
vTB f

1
+
g

2
hTB h . (14)

Furthermore, as 1T
(

1
2
v[(f1,h − f ∗1 )L]1−1

)
= 1

2
vTB f

1
− 1

2
[vhf

∗
1 ]1−1, we may choose

kh =
1

2

(
(hv2)h + g(hh)

2
)

= f2,h −
1

2
(hv2)h +

g

2

(
(hh)

2 − (h2)h
)
,

k∗(±1) = f ∗2 −
1

2
vh(±1)f ∗1 ,

in order to obtain for the surface terms

1T
(

[(kh − k∗)L]1−1 +
1

2
v[(f1,h − f ∗1 )L]1−1

)
=

1

2
1TB hv2 +

g

2
hT [hhL]1−1 −

[
f ∗2 −

1

2
vhf

∗
1

]1

−1

+
1

2
vTB f

1
− 1

2
[vhf

∗
1 ]1−1

=
1

2
1TB hv2 +

g

2
hTB h+

1

2
vTB f

1
+ [f ∗2 ]1−1 . (15)

8
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Comparing (14) and (15), the change of momentum within a cell directly corresponds
to momentum fluxes across the cell boundaries. In addition, the numerical flux f ∗2 is
unique on each cell boundary. Therefore, for constant bottom topography, momentum is
conserved.

The final form of the skew-symmetric semi-discrete momentum equation is given by

∆x

2

du2

dt
+Df

2
+

1

2
shv,v +

g

2
sh,h + ghD b = M−1[(f2,h − f ∗2 )L]1−1 +M−1sbc , (16)

with the cell boundary correction term

sbc =
1

2
v[(f1,h − f ∗1 )L]1−1 −

1

2

[(
(hv2)h − vhf ∗1 − g(hh)

2 + g(h2)h
)
L
]1
−1

.

5.3 Entropy conservation

An entropy function for the shallow water equations is given by the total energy com-
posed of the kinetic energy k = 1

2
hv2 and the potential energy p = 1

2
gh2 + ghb. The

semi-discrete kinetic energy balance can be reconstructed from the initial momentum
discretization (11) multiplied by v, since d

dt
k = 1

2
(v

du2
dt

+ u
2

dv
dt

). We have

∆x

2

dk

dt
+

1

2
v
(
Dhv2 + hv D v

)
+ gh v D(h+ b) = M−1v[(kh − k∗)L]1−1 .

The semi-discrete potential energy balance can be obtained from the semi-discrete conti-
nuity equation multiplied by g(h+ b) since d

dt
p = g(h+ b)dh

dt
. We obtain

∆x

2

dp

dt
+ g(h+ b)Df

1
= M−1g(h+ b)[(f1,h − f ∗1 )L]1−1 .

For the total energy, we have thus

∆x

2

de

dt
+D

(
1

2
hv3 + gu

2
(h+ b)

)
+

1

2
sv,hv2 + gshv,h+b

= M−1v[(kh − k∗)L]1−1 +M−1g(h+ b)[(f1,h − f ∗1 )L]1−1 .

Considering the cell means, using (13), we have

1TM
∆x

2

de

dt
= −1

2
vTBhv2 − guT2B(h+ b) + vT [(kh − k∗)L]1−1 + g(h+ b)T [(f1,h − f ∗1 )L]1−1

= vT
[(g

2
(hh)

2 − k∗
)
L
]1

−1
− g(h+ b)T [f ∗1L]1−1 .

Now, at an interface the sum of ingoing and outgoing fluxes has to be zero. At such an
interface between to cells Cm, Cm+1, we define the jump and the arithmetic mean of a
quantity ah as [[ah]] = am+1

h (−1)− amh (1) and {{ah}} = 1
2

(
am+1
h (−1) + amh (1)

)
. Thus, at

9
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an interface, we obtain

(vm+1)T
((g

2
(hm+1

h )2(−1)− k∗,m+1(−1)
)
L(−1)

)
− g(hm+1 + bm+1)Tf ∗1L(−1)

− (vm)T
((g

2
(hmh )2(1)− k∗,m(1)

)
L(1)

)
+ g(hm + bm)Tf ∗1L(1)

=
g

2
[[(vh)(hh)

2]]− f ∗2 [[vh]] +
1

2
f ∗1 [[(vh)

2]]− gf ∗1 [[(h+ b)h]] .

As [[ahbh]] = {{ah}}[[bh]] + [[ah]]{{bh}}, and assuming a continuous bottom topography,
i.e. [[bh]] = 0, we may rewrite this as

g{{vh}}{{hh}}[[hh]] +
g

2
{{(hh)2}}[[vh]]− f ∗2 [[vh]] + f ∗1{{vh}}[[vh]]− gf ∗1 [[hh]]

= g ({{vh}}{{hh}} − f ∗1 ) [[hh]] +
(g

2
{{(hh)2}} − f ∗2 + f ∗1{{vh}}

)
[[vh]]

!
= 0

Since [[hh]] and [[vh]] may cancel out independently, we obtain the energy conservative
numerical flux

f ∗ =

(
f ∗1
f ∗2

)
=

(
{{hh}}{{vh}}

{{hh}}{{vh}}2 + g
2
{{(hh)2}}

)
.

Using this numerical flux, an entropy conserving DG scheme on Gauss nodes is con-
structed.

5.4 Well-balancedness

Well-balancedness for lake at rest situations v ≡ 0 and h+ b ≡ const and a continuous
bottom topography can be proven for the entropy conserving DG scheme on Gauss nodes
as follows. Due to v ≡ 0, the continuity equation (10) directly reduces to stationary water

height, i.e. ∆x
2

du1
dt

= 0. The momentum equation (12) yields

∆x

2

du2

dt
= −ghD (h+ b) +M−1

[(g
2

(hh)
2 − f ∗2

)
L
]1

−1

= M−1
[(g

2
(hh)

2 − g

2
{{(hh)2}}

)
L
]1

−1
.

Now, since we assume a continuous bottom topography, hence [[b]] = 0, the lake at rest
condition [[h+ b]] = 0 yields [[h]] = 0 and thus[(g

2
(hh)

2 − g

2
{{(hh)2}}

)
L
]1

−1
=
[(g

2
(hh)

2 − g

2
(hh)

2
)
L
]1

−1
= 0 .

Hence, ∆x
2

du2
dt

= 0, proving that the lake at rest situation is preserved.

10
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6 CONCLUSIONS

While the higher degree of exactness of Gauss quadrature may or may not yield a
more accurate numerical solution depending on the specific test case, a Fourier analyis
more directly pinpoints the source of the deviation of the semi-discrete DG solution from
the exact solution of a linear PDE. Higher accuracy of Gauss nodes then manifests itself
in higher accuracy of the physically relevant eigenvalue. Secondly, in certain situations,
higher accuracy alone is not satisfactory in itself but has to be combinable with the preser-
vation of relevant physically properties. Here, we have shown that the same approach used
to achieve kinetic energy preservation for the Euler equations in [1] may be used to obtain
entropy preservation for the shallow water equations.
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