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Abstract. Particle packings play an important role in the discrete element modelling
of particulate systems as different packings can lead to different physical behaviour, and
therefore need to be properly characterised and controlled. Apart from a few conven-
tional approaches, there is still a lack of more general, comprehensive and quantitative
approaches that can reveal some fundamental features of packings. The current work
attempts to develop a novel packing characterising system based on two techniques: dig-
italised image representation of a packing and subsequent application of Principal Com-
ponent Analysis to the resulting image. It will prove that the principal components or
variances of a packing image can indeed qualify as the signature of the packing, and there-
fore can be utilised to characterise the packing. Furthermore, a dissimilarity coefficient or
a similarity index will be defined which provides a single valued metric to quantitatively
compare two packings. Comprehensive investigations for several groups of purposefully
generated particle packings are conducted to understand relationships of their principal
variances with packing features. The difference between two packings with different fea-
tures can be revealed by the principal variance (PV) and dissimilarity coefficient (DC).

1 INTRODUCTION

The particle packing plays a fundamental role in leading the physical behaviour of
a particle system. Therefore it is of great importance to conduct the spatial-statistical
analysis of the geometrical structure of the system. As the topology of the system is
highly complex, it is difficult to observe the way particles packed around each other
by experiments [1]. With the development of various particle based methods, such as
Molecular Dynamics (MD) and the Discrete Element Method [2, 3, 4], more detailed
information on the internal structure of particulate systems can be accessed. Currently,
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the techniques applied to investigate the features of particle packings mainly focus on the
packing density and orientations of the particle contacts.

The informations of a packing can be clarified into two categories: particle related and
contact related. The classical characteristics of the particles are particle size distribution
and packing density. These informations cannot reflect the spatial feature of the packing.
Some researchers attempted to treat this issue using a radial function [5] while it is less
effective. The features of the contacts can be checked by coordination number, contact
force distribution and the contact orientation distribution[6]. These informations can only
be achieved for the dense packing with contacts between particles. Summarily, there is
still a lack of more general, comprehensive and quantitative approaches that can reveal
some fundamental features of packing.

A particle packing can be viewed as a specific spatial variation of solid material (as-
signed a value 1) and void (a value of 0). The packing can be represented as a digitalised
image with grey-scale ranging from 0 to 1 on a regular grid. Then the resulting packing
image can be analysed by techniques developed in the field of computer graphics and
imaging process [7, 8, 9, 10], and the (dis)similarity of multiple packing images may also
be compared in a quantitative manner. Principal component analysis (PCA) [11, 12] is
one of the most popular linear transform based statistical techniques, and has been ex-
tensively used in a wide variety of applications. It has proved to be a powerful tool that
is often employed for data analysis in general, and dimension reduction in multi-variance
analysis, and pattern recognition in signal and imaging processing in particular.

Therefore, a novel characterising method is developed using the principal component of
a packing image as the signature of the packing. Furthermore, a dissimilarity coefficient is
defined which can provide a single valued metric to quantitatively compare two packings.
This has been made possible by the definition of the principal variance function that maps
the ordinal numbers of individual principal variances into a non-dimensional unit interval.
The characterisation of the particle packing can be revealed by the subsequent principal
component analysis.

The paper is organised as follows. The whole analysis procedure of applying PCA to a
spherical particle packing is introduced in Section 2, including the packing digitalisazeion,
the formation of packing image, the subsequent numerical treatment of the image matrix
and the resulted characterisation of particle packing revealed by the principal variance
function and the dissimilarity coefficient. In Section 3, this packing characterising system
is applied to several groups of purposefully generated random packings. The PCA analysis
is conducted to the random packings. Then comprehensive investigations are carried out
to illustrate the relationship between packing features and results obtained by PCA. The
result of principal component analysis can evaluate the different effects on packings caused
by configuration randomness of the packings. Concluding remarks are made in Section 4.

2 NUMERICAL PROCEDURE OF PCA

This section describe the full numerical procedure of the Principal Component Analysis
and the following techniques which are used to characterise the particle packings. As only
the main principals of PCA are adopted in the current work, some minor modifications
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(a) a packing with a square analysis

window

(b) a 100× 100 digitalised image

Figure 1: A random particle packing and a digital representation within the analysis window

are made and different terminologies are used.

2.1 Packing digitalisation

Firstly, an analysis window A of rectangular shape is specified in the domain of the
particle system. This window can be divided into M ×N square cells with same spacing
h. The grid cell is denoted as Aij according to the index along the X and Y directions.
The average area covered by particles is

aij =
|Ωg ∩ Aij|
|Aij|

(1)

where |Ω| denotes the measure or area of the particles; and |Aij| = h2. An empty cell
with no overlapping with any particle has aij = 0; while a cell fully covered by a particle
has aij = 1. A cell partially covered by particles has aij < 1. So in general aij ∈ [0, 1].

2.2 Formation of packing image

The collection of all the cell average areas aij forms an M × N matrix Ah = {aij},
which can be viewed as a digitalised grey-scale representation of the original packing Ωp in
the region A, thus is termed as the packing matrix or image. Figure 1(b) illustrates such
a digitalisation of a disc particle packing shown in Figure 1(a). Clearly, Ah is accurate
within particles or void space of the packing, but may introduce approximation around
particle boundaries. The accuracy of this representation for the original packing depends
on the grid spacing h, and will be accurate in the limit case:

lim
h→0

Ah = Ωg ∩ A (2)
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2.3 Numerical procedures and formulations

Let mj be the mean value of the j-th column of the packing matrix Ah

mj =
1

M

M∑
i=1

aij (3)

By subtraction of its mean from each column vector of Ah, the column centralised
matrix ĀN of Ah is obtained as:

ĀN = Ah − e
M
mN (4)

where e
M

is an M × 1 column vector with all its elements being 1’s; and mN is the 1×N
mean value vector mN = {mj}.

Define the covariance matrix of ĀN as

SN =
1

M
Ā

T

NĀN (5)

where SN is a N × N square matrix. Notice in the above that M instead of M − 1 is
used. Further define the column-wise total variance as

σc
N

=
1

N
Tr(SN) =

1

N

N∑
i=1

(SN)ii (6)

which may be (slightly) different from the total variance σh in general.
By solving the eigenvalue problem of SN , it yields the following matrix decomposition

SNVN = VNDN (7)

with
DN = VT

NSNVN , VT
NVN = IN

where the diagonal matrix DN = diag{di} contains all the eigenvalues di in descending or-
der, which are termed the principal variances (PVs); and VN = {vi} are the orthonormal
vectors, termed the principal modes. As ĀN is column centralised, SN is a semi-positive
definite matrix with at least one zero principal variance. It is also well known that the
sum of the PVs and the total column-wise variance is related by

1

N

N∑
i=1

di = σc
N (8)

SN can be recovered from the principal variances and modes as

SN = VNDNV
T
N =

N−1∑
i=1

diviv
T
i (9)
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In many applications, only the first few principal variances are needed to approximate
SN to a reasonable degree, thereby significantly reducing the dimension of the problem
concerned. This is often the main objection of PCA, but not an issue for the current
problem.

Further define the projection UN of ĀN onto the space spanned by VN as

UN = ĀNVN (10)

Then it has

DN =
1

N
UT

NUN (11)

and ĀN and Ah can be recovered by

ĀN = UNV
T
N ; Ah = ĀN + eMmN (12)

Similarly to SN , ĀN or Ah can be optimally approximated by the leading principal
variances.

The column-wise total variance σc
N

, the mean value vector mN , the principal variance
matrix DN and the corresponding modes VN form a unique set SN , termed the column-
wise characteristic set, that fully determines the packing in the vertical direction

CN = {σc
N
,mN ,DN ,VN} (13)

As the PVs and the column-wise total variance is related by (8), and the total variance
(and also the column-wise variance) is related to the density, the PVs play a dominant
role to characterise a packing image and therefore can be viewed as the (column-wise)
signature of the packing.

2.4 Principal variance function

To facilitate the comparison between different sets of principal variances, particularly
when they are obtained from different resolutions P , the ordinal number i of a principal
variance di is mapped from 1 to P to a non-dimensional ”position” variable x ∈ [0, 1] by

x(i) =
1

P

(
i− 1

2

)
(14)

Then a continuous function d(x), x ∈ [0, 1], termed the principal variance function, can be
constructed to interpolate the discrete variances di using piecewise linear or higher order
interpolation functions such that

d(xi) = di, xi = x(i), i = 1, · · · , P (15)

2.5 Packing image similarity

Consider two packing images with their principal variance functions d1(x) and d2(x)
obtained, define a so-called dissimilarity coefficient (DC) between these two images as

Dc =
[ 1

Σ1 + Σ2

∫ 1

0

[d1(x)− d2(x)]2d x
]1/2
∈ [0, 1] (16)
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(a) Packing U1 (b) Packing U2 (c) Packing U4 (d) Packing U8

(e) Image U1(N) (f) Image U2(N) (g) Image U4(N) (h) Image U8(N)

Figure 2: Four uniform packing groups in region [-0.1, 1.1] × [-0.1, 1.1] (a-d); and their digital images
(with N=100) within region [0, 1] × [0, 1] (e-h)

where Σ1 and Σ2 are defined as

Σi =

∫ 1

0

d2i (x) dx (i = 1, 2)

Consequently, the degree of similarity of these two packing images can be quantified by
the similarity index ∈ [0, 100] defined as

SI = (1−Dc)× 100 (17)

3 PACKING CHARACTERISATION

This section is devoted to illustrating how the principal variance function and dissim-
ilarity coefficient defined in the previous section can be applied to quantitatively charac-
terise the features of different packings.

Four groups of random particle packings are generated within the domain [−0.1, 1.1]×
[−0.1, 1.1] with the periodic condition applied to both directions. All groups have particle
sizes obeying uniform distribution within a range. Each group has the particle size range
doubled from the previous group. The size distribution of groups U2, U4, U8 are respec-
tively 2, 4 and 8 times of the base group U1. 10 random packing samples with the same
size distribution are generated in each group. The packings and their images at N = 100
are displayed in Figure 2.

For each packing group, the PVs of all 10 samples are computed and their averages
are taken to be the PVs of the group. For illustrative purpose, the principal variance
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(a) U1(100) (b) U1(400)

Figure 3: Principal variance of group U1

Table 1: Average dissimilarity coefficient of each group of random packings

N U1 U2 U4 U8

400 0.0126 0.0215 0.0372 0.0602
100 0.0378 0.0379 0.0465 0.0662

functions of the 10 samples for group U1 at two resolutions N=100 and 400 are displayed
in Figure 3. Clearly the PV functions of the 10 samples at each set are located within
a narrow band around the group mean value. The maximum difference appears at the
leading variances but is much reduced for smaller PVs. This indicates that these sam-
ples randomly generated from the same distribution indeed have very similar statistical
features.

To quantify the difference, the dissimilarity coefficient of 10 samples in each group
are calculated based on the formula (16) against their group average for two resolutions:
N=100 and 400. The average dissimilarity coefficients of 10 samples in each group for
the three resolutions are provided in Table 1. As Figure 3 visually shows a minor differ-
ence among PVs functions of samples in each group, which is confirmed by very small
dissimilarity coefficients in Table 1, it can be concluded that the effects of the particle
distribution randomness is indeed insignificant. It has also been found that the difference
decreases when the number of particles in the packing increases.

Besides reflecting the influence of the configuration randomness of the particle system,
Principal Component Analysis can also indicate the different level of effects on packing
caused by particle distribution, packing density and particle size. The uniformity and
isotropy of a packing can also been investigated by this PCA based approach.
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4 CONCLUSIONS

- The current has developed a novel packing characterising system based on two
techniques: digitalised image representation of a packing and subsequent application
of Principal Component Analysis to the resulting image. It has proved that the
principal components or variances of a packing image can indeed qualify as the
signature of the packing, and therefore can be utilised to characterise the packing.
Furthermore, a dissimilarity coefficient or a similarity index can be defined which
provides a single valued metric to quantitatively compare two packings.

- The values of PVs and DC can indicate different levels of effects on packing caused
by configuration randomness, particle distribution, packing density and particle size.
The uniformity and isotropy of a packing can also been investigated by this PCA
based approach.

- The methodology developed can be extended to both 3D cases and non-spherical
particle packings, and can also be applicable to some other problems in particle
systems
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