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Abstract. When using Immersed Boundary methods for solving the elasticity prob-
lem, some nodes are outside of the problem domain with a small associated stiffness in
comparison to the nodes placed into the problem domain. This characteristic issue of
the Immersed Boundary methods yields ill-conditioning problems when solving the global
system of equations. The main reason behind this behaviour is the fact that the energy
contribution of the pathological nodes is small, therefore the global energy of the prob-
lem is only slightly affected by the solution of these nodes. This contribution proposes a
method that adds an extra term to the formulation that stabilizes the solution of those
pathological nodes. This new term consists in i) a stiffness-type matrix involving only
these nodes (which value is related to the element size) for the LHS of the system and ii)
a force directly applied to these nodes. The results show an improvement of the system
matrix condition number and thus, a better performance of the iterative solvers. In ad-
dition, in the case of contact problems the ill-conditioning of the system matrix prevents
the convergence for the contact problem. The numerical results show that the addition
of the proposed stabilisation term allows to alleviate these kind of problems.

1 INTRODUCTION

Last decades in the XXth century, a parallel concept to the Finite Element Method
(FEM) emerged, the Immerse Boundary Method (IBM) which according to [7] has its
origins in the paper published by VK Saul’ev in Russian Solution of certain boundary value
problems on high-speed computers by the fictitious domain method (Mat.Z. 1963.4:912-
925). In the FEM framework the mesh is conforming with the geometry of the component.
Therefore, the mesh generation complexity is directly related with that of the geometry.
Besides the existence of advanced and automated mesh generators algorithms [10, 17],
the meshing process is one of the most tedious processes of the FEM. On the contrary,
the IBM completely separates the mesh used for solving the Finite Element (FE) problem
from the geometry of the component, therefore the geometrical complexity is completely
unrelated with the mesh generation process, which is, in fact, usually octree-based. Since
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the FE mesh is not related with the geometry, an special treatment of the boundary is
needed in the IBM. This important issue is a key ingredient to differentiate the IBM
approaches such as the CutFEM [6], using the Level Set method to define the geometry
of the component, the Finite Cell Method [15] using special integration methods or the
cgFEM [21, 19] which is able to take into account the exact geometry by using special
integration algorithms.

Independently of the approach, most of these methods increase some difficulties with
respect to classical FEM in similar aspects: i.e. imposing Dirichlet boundary bonditions,
numerical conditioning, accuracy over the boundary, etc. CutFEM [6] proposes a robust
methodology to guarantee the stability when Dirichlet boundaries cut the mesh resulting
in very small element subregions. cgFEM [21, 19] also uses stabilization methods for
imposing Dirichlet boundary conditions guaranteeing the coercitivity. These stabilization
procedures are able to guarantee the solvability of the problem at hand for direct solvers.
However, when iterative solvers are needed, not only the solvability must be guaranteed
but also the condition number should be controlled in order to guarantee the convergence
of the iterative solver.

In this paper we propose a procedure to keep under control the condition number
of the system of equations under the cgFEM framework. The proposed method uses
a displacements recovery procedure over the boundary to control the solution of the
nodes outside the physical domain, thus avoiding degrees of freedom with a small stiffness
associated. The proposed method has been tested for bilinear and biquadratic elements
for the linear elasticity problem and for the contact problem, showing an improvement of
the solution convergence.

2 PROBLEM STATEMENT

This paper is devoted to solve the 3D contact problem by means of the cgFEM. The
notation used all along the contribution is settled at this point. The Cauchy stress field is
denoted as σ, the displacement field as u, and the strain field as ε, all these fields being
defined over the domain Ω ⊂ R3, with boundary denoted by ∂Ω. Prescribed tractions
denoted by t are imposed over the part ΓN of the boundary, while displacements denoted
by ū are prescribed over the part ΓD of the boundary. Body loads are denoted as b.

The linear elasticity problem takes the following variational from

Find u ∈ (V + {w}) : ∀v ∈ V
a(u,v) = l(v) where

a(u,v) =

∫
Ω

ε(u)TDε(v) dΩ

l(v) =

∫
Ω

bTv dΩ +

∫
ΓN

tTv dΓ,

(1)

where V = {v | v ∈ [H1(Ω)]
3
,v|ΓD

= 0}, w is a particular displacement field satisfying
the Dirichlet boundary conditions and here the matrix D contains the elasticity coefficients
of the usual linear isotropic constitutive law relating the stress field with strain field. For
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the contact problem, considering large deformations, we denote as ΓC the contact surface,
being Γ

(1)
C the slave contact surface and Γ

(2)
C the master contact surface. We use a ray-

tracing technique [20] to define the contact point pairs, i.e. we intersect the master contact

surface Γ
(2)
C at x(2) with a line emanating from x(1) in the direction of the normal vector

to the slave surface n(1). Then the normal contact gap can be defined as:

gN =
(
x(2) − x(1)

)
· n(1). (2)

The complete formulation for the contact problem used in this manuscript is completely
described in [20, 14].

2.1 BOUNDARY CONDITIONS IN cgFEM

When using the cgFEM for numerically solving the problem defined in section 2, we find
out that the Dirichlet boundary conditions cannot be directly applied as in the standard
FEM since, in general, there are not any nodes over the boundary. Therefore, a mortar
method is used which weakly imposes the essential boundary conditions. In order to do
that, a Lagrange multipliers discretization over the Dirichlet boundaries is needed. The
choice of the Lagrange multipliers space is crucial for the well behaviour of the proposed
method. Several works on that sense came out in the last years. Barbosa and Hughes [2, 3]
propose stabilization methods in order to guarantee the Ladyzhenskaya-Babuška-Breezi
(LBB) condition. Other authors [4, 13] instead, propose the Vital Vertex Method which
a prioiri defines an appropriate discretization for the Lagrange multiplier space; however
this procedure is not trivial for the 3D case. Also Hansbo et. al. [12] and Burman and
Hansbo [8] propose an adaptation of the Nitsche’s method to the IBM framework. In
the context of the Finite Cell Method, the authors propose the use of a Nitsche’s based
approach for imposing the essential boundary conditions [18]. More recently Tur et. al.
[21] propose a stabilization technique which makes use of recovery procedures easing the
implementation of the method specially for the 3D case. This last method is adopted
in this contribution. The weak imposition of Dirichlet boundary conditions via a mortar
method implies the use of Lagrange multipliers, therefore solving problem (1) is equivalent
to solve the following problem:

L (vh,µh) =
1

2
a(vh,vh) + b(µh,vh − g)− l(vh), (3)

where vh ∈ V h is the discrete counterpart of the space V and µh ∈ Mh, a suitable
discretized space for the Lagrange multipliers. Note that, in general, the appropriate
Lagrange multipliers space is not easy to find since it is problem-dependent and it also
depends on the way the mesh and geometry intersect. The approach followed in this
contribution introduces a Lagrange multiplier at each integration point of the surface with
a constant approximation space. This discretization is not suitable in general, therefore
an additional stabilization term is added:

L (vh,µh) = L (vh,µh)− h

k1

∫
ΓD

µh · (λh −T(ûh)) dΓ, (4)
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where k1 > 1 is parameter defined by the user and h is the characteristic mesh size. The
interested reader is addressed to [21] for further details.

Expression (4) is similar to that used in the Nitsche’s method in which the operator
T(ûh) corresponds to the tractions over the Dirichlet boundary. Because of that, Nitsche’s
method results hard to implement. In the proposed approach, the operator T(ûh) is a
post-process of the solution, guaranteeing the correct convergence of the method [21].
Further details about the evaluation of this operator are given in section 3.2. Problem (4)
is already solvable and stable since essential boundary conditions are properly imposed.

However, depending on how the mesh and geometry intersect, it could happen that
the problem becomes ill-conditioned. For small problems, this is not an important issue
since direct solvers are able to solve them without major difficulty. In the case of bigger
problems iterative solvers are used, and their convergence is strongly affected by the
condition number of the system to solve [1]. In the case of IBM in general, and in particular
in the case of cgFEM, there are some mesh configurations in which the position of the
geometry boundary with respect to the nodes, specially the external nodes, provokes ill-
conditioning issues, preventing the use of iterative solvers. Figure 1a shows an example in
which the numerical problem is suitable to be ill-conditioned. If the stiffness associated
to the nodes outside the domain is small this leads to an ill-conditioning of the system
of equations. This is because the solution of those pathological nodes does not affect to
the energy of the problem. That is, almost independently of the solution of those nodes
the global energy remains the same. In other words, the sensibility of the energy to the
variation of the solution of those nodes is small. To the authors knowledge, there is not
any technique to face this problem in bibliography. Therefore in this contribution we
pretend to introduce a new technique based on the use of recovered fields with the aim
of, at least, partially solve the issue, common for the IBM. The proposed technique adds
an additional term to the formulation according to equation (5)

L (vh,µh) = L (vh,µh)− h

k1

∫
ΓD

µh · (λh −T(ûh)) dΓ

− k2E

h2

∫
Ω?

vh · (uh − S(ûh)) dΓ, (5)

where E is the Young’s modulus and k2 > 0 is also a user defined parameter.
The additional term in equation (5) penalises the “free” displacement of those patho-

logical nodes. In fact, it introduces and artificial stiffness which is compensated with an
artificial force as shown in figure 1b. In this term, the integration domain Ω? corresponds
to the element containing the pathological node, not to the surface but to the volume.
Thus, the integration domain now considers also the part of the element falling outside
the problem domain. The operator S(ûh) corresponds to a displacements field obtained
as a post-process of the FE solution uh. Further details of operator S are in section 3.4.
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(a) Ill-conditioning issue due to mesh-
geometry intersection.

(b) Effect of the additional term.

Figure 1: Scheme of an element subject to ill-conditioning issues. The stiffness of the
nodes far from the domain (in grey) is small.

2.2 RESOLUTION ALGORITHM

In this contribution we consider the Conjugate Gradient Squared Method (CGS) pro-
vided by Matlab for solving problem (5). As you can appreciate, the additional terms
require the solution to be available, being now a non-linear problem. This non-linear
problem is solved by using the fixed point algorithm. The procedure follows the next
steps:

1. Set an initial guess, uh0 .

2. Evaluate terms T(uh0) and S(uh0).

3. Solve problem (5) using the CGS method up to a given tolerance, τ0, obtaining uh1 .

4. Evaluate ε ∝ ‖uh0 − uh1‖.

5. Set a new tolerance τ1 = ετ0.

6. Evaluate terms T(uh1) and S(uh1).

7. Solve problem (5) using the CGS method up to a given tolerance, τ1, obtaining uh2 .

8. Evaluate ε ∝ ‖uh1 − uh2‖.

9. If ε < Tol, then the solution is obtained. In other case, continue with step 5.
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Note that it could seem that this fixed point algorithm is expensive, however the correc-
tions introduced by the stabilization terms are local and concentrated in the boundary.
This fact allows to reuse the solution of the previous iterations as initial guess for the
CGS solver in the next iteration, speeding up the calculations. The benefits of the pro-
posed method are crucial for iterative solvers due to notorious decreasing of the condition
number, allowing the right convergence of the iterative solver. Numerical results will
illustrate the increase on the performance when the proposed method is used for both,
linear elasticity and contact problems considering large deformations.

3 RECOVERY TECHNIQUES

Recovery procedures arise from error indicators techniques developed during the last
decades [24, 25, 5, 9, 22, 16, 23], just to cite some. Among them we can highlight the
Superconvergent Patch Recovery technique developed by Zienkiewicz and Zhu [25] which
provides a robust, efficient and easy-to-implement error indicator. The recovery procedure
used in this error indicator proposed by Zienkiewicz and Zhu is the basis of the recovery
techniques proposed in this contribution.

3.1 Stress recovery technique

The recovered field at each patch of elements i, σ̂i, is obtained by minimizing the
following functional:

Fσi (σ̂i) =

∫
Ω̂i

(σh − σ̂i)2 dΩ. (6)

A patch of elements consist in the elements attached to the node i, also called assembly
node. Additionally, we can also add extra terms which improve the quality of the recovered
stress field at each patch, σ̂i, such as boundary and internal equilibrium and compatibility,
see for instance [11]. In this contribution the field σ̂i is approximated by a polynomial of
the same order than the FE solution. After obtaining the recovered stress field at each
patch of elements, valid only in the patch surrounding the node i, the recovered field in
the whole domain is obtained by using the Conjoint Polynomial Enhancement [5], which
is nothing but the weighted sum of the contribution of each patch at a given position
x ∈ Ω:

σ̂ =
Nvn∑
j=1

N(x)jσ̂j(x), (7)

where Nvn is the number of vertex nodes in a element and the weighting functions are
the linear shape functions of the elements.

3.2 Operator T

The operator T is the projection of the field σ̂ to the boundary, that is:

T(uh) = n · σ̂ (8)
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Note that for practical purposes since operator T is only needed along the Dirichlet
boundaries, it only requires the recovery process to be applied in the patches cut by the
boundary, therefore it can be considered as computationally inexpensive.

3.3 Displacement recovery technique

As a difference from the stress recovery procedure, in which one of the main objectives
is to obtain a continuous stress field from the discontinuous one provided by the FEM,
the displacement recovery procedure improves the existing solution by locally increasing
the degree of approximation. Thus, the recovered displacement field ûi at each patch i is
obtained by minimizing the following functional:

Fui (ûi) =

∫
Ω̂i

(uh − ûi)
2 dΩ. (9)

The recovered displacement field ûi is approximated by a polynomial of one degree higher
than the FEM solution. In this case, the functional Fui can be enriched by adding extra
terms to enforce equilibrium via a collocation method:

Fu,eqi = Fu,eqi +

Nie∑
k=1

λk(∇ · σ̂ui − b) +

Nie+Nbe∑
k=1+Nie

λk(n · σ̂ui − t), (10)

where λk is the kth Lagrange multiplier, Nie is the number of collocation points in which
the internal equilibrium is enforced at each patch, Nbe is the number of points in which
the boundary equilibrium is enforced. The stress field σ̂ui is evaluated at each patch as
follows:

σ̂ui = Dε(ûi). (11)

Finally, the displacement and stress fields over the whole domain are approximated by
using the Conjoint Polynomial Enhancement as follows:

σ̂σ =
Nvn∑
j=1

N(x)jσ̂
u
i , (12)

and

ûu =
Nvn∑
j=1

N(x)jûi. (13)

Note that the difference between σ̂σ and σ̂u is that the former is locally equilibrated
and the later is compatible with ûu. Note that the superindex σ indicates that the
field is locally equilibrated and the superindex u indicates that the field is kinematically
admissible or it directly comes from a kinematically admissible field.
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3.4 Operator S

The operator S is directly the displacement field ûu. Note that for practical purposes
since operator S is only needed along the boundaries, it only requires the recovery process
to be applied in the patches cut by the boundary, therefore it can be considered as
computationally inexpensive.

4 NUMERICAL RESULTS

In this section, two academic problems are used to show the numerical results obtained
with the proposed method. The first problem is a Dirichlet problem with a spherical
domain. The second presents two bodies under contact.

4.1 Problem 1. Sphere

This problem is defined in an spherical domain of diameter 2 centred at origin, as shown
in Figure 2a. The displacement exact solution (14) is artificially generated. Therefore,
the problem prescribes the displacement field (14) over the external boundary and the
corresponding body loads numerically evaluated from the displacement field. The Young
modulus is set to E = 1000 and the Poisson ratio ν = 0.3. The numerical solution
obtained with the proposed method is shown in Figure 2b.

ux(x, y, z) = x+ x2 − 2xy + x3 − 3xy2 + xy

uy(x, y, z) = −y − 2xy − 3x2y + y3 − xy2

uz(x, y, z) = 0

(14)

(a) Geometry of the problem. (b) Solution obtained with the proposed
method.

Figure 2: Problem 1. Geometry and solution.

Figure 3 shows the convergence of the problem, obtaining for all the cases right con-
vergence rates for a linear discretization. This fact, numerically demonstrates that the
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Figure 3: Problem 1. Convergence of the exact error in energy norm.

additional stabilization term does no modify the convergence of the numerical problem to
the exact solution. Table 1 shows the condition number of the problem without the sta-
bilization term (first row) and the condition number when the stabilization term is used,
for different mesh levels, i.e. level 4 means 24 elements in each direction. We can observe
that, as a difference with the first row, the condition number is considerably smaller and
slightly changes between the different meshes.

Level 4 Level 5
7.42 · 108 7.42 · 1018

k2 = 0.01
3.32 · 106 k2 = 0.01

5.08 · 106

A = 1% A = 1%
k2 = 0.01

3.32 · 106 k2 = 0.01
5.08 · 106

A = 5% A = 5%
k2 = 0.001

3.32 · 106 k2 = 0.001
5.09 · 106

A = 1% A = 1%
k2 = 0.001

3.32 · 106 k2 = 0.001
5.09 · 106

A = 5% A = 5%

Table 1: Condition number on the system of equations for different meshes and configu-
ration parameters. The parameter A corresponds to the ratio between the volume of the
element and the intersected volume.
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4.2 Problem 2. Contact problem

This problem shows the contact between two annulus. The annulus placed at right has
prescribed homogeneous Dirichlet boundary condition over the half left of the domain,
whereas the left annulus has a prescribed displacement of 0.5 in y direction over the left
half of the surface. 5 load steps are considered. The Young modulus is set to E = 1000
and the Poisson ration is ν = 0.3. Large displacements are also considered.

(a) Geometry of the problem. (b) Solution obtained with the proposed
method.

Figure 4: Problem 2. Geometry and solution.

Table 2 shows the accumulative iterations of the CGS iterative solver during the con-
tact problem resolution. It can be appreciated, for coarse meshes, that the stabilization
techniques does not provide better results, but when the element size decreases, the num-
ber of iterations without stabilization considerably increases. This is related with the
increase of the condition number for finer meshes observed in the previous example.

Mesh Level With stabilization Without stabilization
3 1223 1161
4 2171 2276
5 4296 5698

Table 2: Accumulative iterations for the iterative solver.

CONCLUSIONS

This manuscript presents a stabilization algorithm in charge of controlling the condition
number of the system of equations. This algorithm is applied into the cgFEM framework
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E. Nadal, J.M. Navarro-Jiménez, M. Tur, J. Albelda and J.J Ródenas

considering the linear elastic problem and a contact problem with a large displacements
formulation. The proposed method needs a fixed point iterative solver which is embedded
into the iterative solver for the global system of equations, thus preserving the efficiency
of the method. The obtained results show that the proposed method effectively controls
the condition number of the system of equations maintaining the right convergence of the
numerical solution to the exact one. Additionally, as a consequence of the control of the
condition number, the number of iterations needed for the iterative solver decreases.
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