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Abstract. This study has been performed within the research project MuScaBlaDes:
"Multi-scale failure analysis with polymorphic uncertainties for optimal design of rotor
blades", which is part of the DFG Priority Program (SPP 1886) "Polymorphic uncertainty
modelling for the numerical design of structures" started in 2016. One of the typical failure
mechanisms of rotor blades in operation are fatigue cracks in adhesive bonds that are in the
focus of our project. Depending on the manufacturing process, the failure is often caused
by air voids whose properties could be generally quantified by non-destructive testing
(NDT) on a representative sub-component, called the Henkel beam. By using the NDT
data, we simulate structural failure by means of a fuzzy-stochastic finite element approach
and compare numerical simulations with real experiments on representative specimens
to validate the uncertainty models. For solving polymorphic problems a MATLAB R©

framework called PolyUQ has been developed and the current state of this ongoing work
will be presented and discussed at the conference.

1 INTRODUCTION

Rotor blades of wind turbines are thin-walled spatial structures typically consisting of
two composite shells and one or two shear webs. The structural components are assembled
with adhesive bonds whose quality affects the overall integrity and reliability of rotor
blades. Within the research project MuScaBlaDes: "Multi-scale failure analysis with
polymorphic uncertainties for optimal design of rotor blades", see Fig. 1, we focus on the
failure caused by debonding which has been identified as a reason for structural collapse
in a full-scale rotor blade test [1].
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Figure 1: Rotor blade at TU Berlin as focus in research project MuScaBlaDes

In this regard, representative sub-components, e.g. the Henkel beam by the Fraunhofer
Institute for Wind Energy and Energy System Technology [2], have been developed in the
past for experimental investigations. It could be seen that the fatigue damage mechanism
is initiated by multiple cracks in the adhesive bonds due to air voids and debonding. For
understanding the reasons of failure, various non-destructive testing (NDT) has been ap-
plied by TU Berlin within the BladeTester project [3]. The obvious assumption that the
crack initiation is probably caused by a critical stress concentration around the air void
inclusions is analysed in this study by means of a finite element approach in consideration
of polymorphic uncertainties. Epistemic uncertainties originate here from the NDT data,
limited information and subjectivity, whereas aleatoric uncertainties result from natural
variability of uncertain variables on the other hand. As an extension of a pure stochastic
approach [4] the resulting polymorphic output displays the influences of different uncer-
tainty sources to the relative bearing capacity of adhesive bonds. Defuzzified stochastic
values like mean value or selected fractile values can finally be used for the assessment of
air voids in a structural failure analysis.

To validate the numerical models with polymorphic uncertainties, we investigate the
structural failure in real experiments of representative specimens. Polymorphic uncer-
tainties have been taken into account in a realistic manner, e.g. from standardised testing
and experimental inaccuracies. The simulation results are then compared to the experi-
mentally determined failure mechanisms as well as ultimate loads.

2 NON-DESTRUCTIVE TESTING OF ADHESIVE BONDS

Within the BladeTester project [3], ten Henkel beams (Fig. 2) have been used for
various studies of adhesive bonds. Both artificial voids of relatively large sizes and natural
voids due to various mixing procedures and material properties have been investigated.
For three Henkel beams (HB) with artificial and natural air voids - namely HB3, HB9
and HB10 - usual computer tomography (CT) devices have been applied, see [5] for more
information. The CT results are at disposal with a resolution of 3mm and partly with a
resolution of 0.8mm in longitudinal direction.

Using the Image Processing Toolbox in MATLAB R©, the analysis of the air void prop-
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Figure 2: Henkel beam geometry and relation to rotor blade according to [2]

erties is done with the following procedure:

1. detection of the region of interest with a length of l = 700mm, see Fig. 2

2. for all relevant two-dimensional CT images

(a) import of the RGB image

(b) converting in a gray image

(c) detection of the two adhesive bonds in the Henkel beam

(d) for all adhesive bonds

i. image binarization
ii. analysis of the air void properties, e.g. amount, position and size
iii. calculation of the air voids content φ

3. visualization in a x-φ-diagram, see Fig. 3.

For the numerical simulations of adhesive bonds, it is useful to simplify the calculated
air voids content φ. The red line in Fig. 3 describes the numerical approximation and
an exemplary adhesive bond structure is shown below the diagram. To mention is that
all air voids with a content less than 5% in the two-dimensional CT image are neglected
in this study. Furthermore, the converting of the RGB values to a scalar gray value, the
gray image analysis and the image binarization require settings which obviously influence
the calculated air void properties. Six adhesive bonds have been taken into account in
total and the corresponding numerical simulations will be described in Section 3.
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Figure 3: Air voids content of Henkel beam 10 - adhesive bond 1 with associated numerical model

3 NUMERICAL SIMULATIONS OF ADHESIVE BONDS

3.1 Numerical model for adhesive bonds

For the development of a numerical model, we focus on static loading of the Henkel
beam. Due to elastic behaviour and present geometrical dimensions, the beam theory is
valid which leads to a linear strain and stress distribution over the beam height. Fur-
thermore, the stress distribution over the adhesive bonds can be considered as constant
caused by the relatively small adhesive bond thickness compared to the Henkel beam
height. To avoid time-consuming numerical simulations, the adhesive bond is defined as
a two-dimensional plate with length l = 700mm in x-direction and width b = 32mm in
y-direction with constant thickness t = 10mm under plane stress. The plate is made of
epoxy resin. We assume a linear elastic material behaviour until the first cracking that
means local failure. It corresponds to a brittle behaviour which is typical under fatigue
loading of adhesive bonds. The plate is fixed at one edge (x = 0mm) and uniformly loaded
in x-direction at another edge (x = 700mm). The relative bearing capacity Fmax/Fideal as
ratio of the ultimate tensile load with air voids to the ultimate tensile load without air
voids is defined as quantity of interest and depends on the air void configuration inside
the adhesive bond.

Figure 4: Air void simplified as slotted hole
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It could be seen in Section 2 that air voids exhibit various dimensions and shapes.
According to the air void content φLP, each air void is simplified as slotted hole and can
be described with the following five parameters, see also Fig. 4:

- midpoint location xM

- midpoint location yM

- width bLP which is calculated by bLP = φLPb

- length lLP which is calculated by lLP = vLPbLP with an air void size ratio vLP

- rotation in x-y-plane αLP which is set to αLP = 0◦ for simplification

3.2 Consideration of polymorphic uncertainties

Limited information on the amount and size of air voids as well as subjective settings
in the CT image analysis lead to epistemic uncertainties whereas natural variability and
randomness of the air void location lead to aleatoric uncertainties. Both types together
require a structural failure analysis with polymorphic uncertainties, which are listed in
Table 1. The total number of uncertain input variables depends on the number of air

Table 1: Input variables for adhesive bond simulations

name unit type values
plate length [mm] deterministic l = 700
plate width [mm] deterministic b = 32

plate thickness [mm] deterministic t = 10
Young’s modulus [MPa] deterministic E = 4890
Poisson’s ratio [/] deterministic ν = 0.22
uniaxial loading [N] deterministic F = 1

numerical parameter [mm] deterministic ε = 0.5
number of air voids [/] fuzzy nLP = TFI 〈0; 2; 4; 6〉
ith air voids content [/] interval φLPi ∈ [0.05; 0.40]
ith air voids size ratio [/] interval vLPi ∈ [1.00; 7.00]

midpoint x-location of air void i [mm] stochastic xMi ∼ U(axi; bxi)
midpoint y-location of air void i [mm] stochastic yMi ∼ U(ayi; byi)

voids nLP itself an uncertain parameter. The air voids content φLP and the air voids size
ratio vLP = lLP/bLP have been defined based on the CT image analysis in Section 2.

The bounds of the uniform distribution for the midpoint location xM are calculated
for each air void i = {1, . . . , nLP} as follows: An effective length leff = l − 2b is divided
in equidistant subdomains with a length of li = leff/nLP and bounds [xmin,i;xmax,i] =
[b+ (i− 1)li; b+ ili] in x-direction. To avoid numerical problems, the equation xmin,i +
ε ≤ xLi < xRi ≤ xmax,i − ε has to be valid for each slotted hole. The relation xMi =
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(xLi + xRi) /2 leads to

axi = xmin,i + ε+
lLPi
2

= b+ (i− 1)
l − 2b

nLP
+ ε+

vLPiφLPib

2
(1)

bxi = xmax,i − ε−
lLPi
2

= b+ i
l − 2b

nLP
− ε− vLPiφLPib

2
.

With the condition that each air void is completely located inside the plate one obtains

ayi =
bLPi
2

=
φLPib

2
(2)

byi = b− bLPi
2

= b− φLPib

2

for the bounds of the uniform distribution for the midpoint location yM.

3.3 Solving and results

A MATLAB R© framework called PolyUQ has been developed inhouse for solving poly-
morphic problems also with an integrated interface to black-box solvers, see Fig. 5.

Figure 5: MATLAB R© framework PolyUQ

The described numerical model and the input variables have already been defined
above. In addition

- the reduced transformation method for the fuzzy variable [6],

- the vertex method for the interval variables [7] and

- the Monte Carlo Sampling as well as the Latin Hypercube Sampling with
n = 103 simulations at maximum in each fuzzy-interval configuration for the stochas-
tic variables [8]
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have been selected as solution methods. Fig. 6 displays the fuzzy-interval-stochastic
and defuzzified output for the relative bearing capacity Fmax/Fideal. For defuzzification,
many methods are discussed in the literature (e.g. in [9]) and the centroid method was
chosen for the worst case. For the discrete worst case membership function in blue with
(xi;µ (xi)) the centroid values c in green are calculated as

c =

∑
xiµ (xi)∑
µ (xi)

. (3)

Figure 6: Fuzzy-interval-stochastic output and corresponding defuzzification

Finally, Fig. 7 shows the convergence of the defuzzified mean to a value of 22% and of
the standard deviation to a value of 8% respectively with increasing number of simulations.

Figure 7: Convergence plot of defuzzified stochastic values
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4 REAL EXPERIMENTS ON REPRESENTATIVE SPECIMENS

For the validation of our numerical models with polymorphic uncertainties, we inves-
tigate the structural failure of a plate under uniaxial tensile loading and compare the
experimental results with the numerical solutions. As a representative material for epoxy
resin described in Section 3.1 we have chosen an acryl glass - Plexiglas R© XT transparent
- where we expect a similar failure mechanism. At that, the holes in the plate shall affect
the failure mechanism in a similar way as the air voids in the adhesive bond. Fig. 8 dis-
plays the experimental setup and the specimens after testing with the associated ultimate
load Fmax and crack pattern that we call failure mechanism (FM).

Figure 8: Uniaxial testing at TU Berlin

Based on uncertain material properties, determined through standardised testing ac-
cording to [10], geometrical imperfections and experimental inaccuracies, we have defined
diverse uncertain variables, see Table 2. Compared to Section 3, the number of holes is
deterministic and the holes are circular so that the size will be defined through the diam-
eter as an interval variable. The x- and y-location of each hole are uniformly distributed
variables with a small scatter, respectively.

As can be seen from Fig. 8, the plate exhibits a scatter of ultimate load and various
crack patterns, i.e. quantitative and qualitative differences of failure mechanism. In
the numerical simulations different first crack locations can also be detected through
uncertain input variables which naturally leads to different failure mechanisms. The first
crack location is equivalent to the location of the maximum stress concentration caused
by uniaxial tensile loading, see Fig. 9.

Analogously to the experiments, the lower edge is fixed and the upper edge is loaded.
The structural failure is reached if the maximum first principal stress in the structure
exceeds the tensile strength, so that max (σ1) = ft = 64MPa. Fig. 10 shows the numerical
results and illustrates that all ten experimental ultimate loads could be find within a 90%
confidence interval. The lowest experimental value Fmax = 2147N corresponds to an
interval fractile value of [5%; 12%] and the highest experimental value Fmax = 2791N
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Table 2: Input variables for Plexiglas R© simulations

name unit type values
plate length [mm] deterministic l = 150
plate width [mm] deterministic b = 50

plate thickness [mm] deterministic t = 4
Poisson’s ratio [/] deterministic ν = 0.38
number of holes [/] deterministic n = 3
tensile strength [MPa] deterministic ft = 64
Young’s modulus [MPa] stochastic E ∼ N (3230; 469)

load angle [◦] stochastic α ∼ U(−2;+2)
hole 1 x-location [mm] stochastic x1 ∼ U(61; 65)
hole 1 y-location [mm] stochastic y1 ∼ U(38; 42)
hole 2 x-location [mm] stochastic x2 ∼ U(67; 71)
hole 2 y-location [mm] stochastic y2 ∼ U(11; 15)
hole 3 x-location [mm] stochastic x3 ∼ U(82; 86)
hole 3 y-location [mm] stochastic y3 ∼ U(30; 34)
hole 1 diameter [mm] interval d1 ∈ [9.5; 10.5]
hole 2 diameter [mm] interval d2 ∈ [7.5; 8.5]
hole 3 diameter [mm] interval d3 ∈ [15.5; 16.5]

Figure 9: Different first crack locations caused by uncertainties

corresponds to an interval fractile value of [43%; 71%], respectively.
The vertex method [7] is used for the interval space whereby the methods

- Monte Carlo Sampling with maximal n = 104 simulations,

- Latin Hypercube Sampling with maximal n = 104/2 simulations and

- Sparse Grid with Clenshaw-Curtis Nodes and a maximal sparse grid level of l = 4
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Figure 10: Interval stochastic output

are compared for the stochastic space [8]. Fig. 11 displays a fast convergence of the
interval mean and the interval standard deviation with increasing number of simulations
independently from the chosen method.

Figure 11: Convergence plot of interval stochastic values

5 CONCLUSIONS

In the present study, the structural failure of adhesive bonds in the presence of polymor-
phic uncertainties is investigated numerically as well as experimentally on representative
specimens.

The proposed numerical model is based on experimental data obtained by computer
tomography of a representative sub-component. Natural variability, imprecise scanning
and limited information lead to aleatoric and epistemic uncertainties which are taken into
account in a fuzzy-interval-stochastic finite element approach. Adhesive bonds with air
voids have shown a considerably smaller bearing capacity in comparison with an adhesive
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bond free of air voids.
Furthermore, real experiments of an acryl glass - Plexiglas R© XT transparent - have been

executed at TU Berlin for validation of the numerical models. Ten specimens consisting
of three holes have been loaded by uniaxial tension and various experimental failure
mechanisms could also be reproduced in the numerical solutions. The numerical model
has been defined in a polymorphic sense and finally yields a 90% confidence interval of
[1907N; 3031N] at worst in which all experimentally determined ultimate loads could be
covered. Like in the previous analysis of adhesive bonds, different numerical methods
have been compared and have shown similar convergence rates.
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