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Abstract. Interaction of fluids with structures play an important role in many industrial 

applications, e.g. in pumps as major components of conveying processes. This paper concerns 

the numerical analysis of fluid structure interaction in a pump. The considered system consists 

of a metal housing, a polymer impeller and the fluid. Thus, we deal with several non-

linearities: large strains, nonlinear material behavior and contact. To analyze this pump, Finite 

Element Method (FEM) and Smoothed Particle Hydrodynamics (SPH) are coupled, both 

methods are Lagrangian formulations. Numerical results are presented and discussed. The 

present study is a benchmark for the analysis of fluid structure interaction with highly 

nonlinear components. The results show that the presented simulation strategy is suitable for 

the optimization of such kinds of industrial problems.   
 

 

1 INTRODUCTION 

Fluid-structure interaction (FSI) occurs in many industrial applications, in which fluid flow 

and flexible deformations of solid structures are coupled. Examples are obstacles in fluid 

flow, the dynamics of fluid-filled structures or transport problems. Efficient numerical 

strategies are required to optimize such kinds of problems.  

Very important components in many industrial applications are pumps to convey matter 

like water, oil, food, granulate etc. There exist many different concepts for pumps, the 

benefits of the respective type depend on the goods to be conveyed, the specific task and 

costs. Here, we consider a radial pump with a housing of metal and a polymer impeller. After 

installing the impeller into the pump its blades highly deform, as shown in Figure 1. Utilizing 

this elasticity, a good sealing can be achieved. Moreover, noise can be reduced by using a soft 

impeller. Depending on the type of fluid to be transported, the material of the impeller must 
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be chosen accordingly. E.g., for transport of food, chloroprene, also known as neoprene is 

frequently used. 

Goal of this work is to develop an efficient simulation model for such kinds of problems, 

which can subsequently be used for optimizing these components in industrial applications. 

 

    
    

Figure 1: Impeller and deformed impeller in the pump 

For simulating and optimizing such pumps in operation there are different numerical 

strategies: One possibility is a Coupled Eulerian Lagrangian analysis, CEL, [1]. In such an 

analysis, the solid bodies are represented by Lagrangian Finite Elements, and the fluid by 

Eulerian Finite Volumes. Another numerical method to model FSI is to couple Lagrangian 

Finite Method (FEM) with Smoothed Particle Hydrodynamics, SPH, [2]. The latter is a 

meshfree Lagrangian formulation, suitable for analysing fluid flow and large deformations of 

solids. The advantage of a coupled FEM-SPH analysis compared to a CEL analysis in FSI 

problems is the Lagrangian formulation for the solids and the fluid, which frequently is 

numerically more efficient and robust compared to the Eulerian formulation. In a former 

study, [3], this benefit has been demonstrated by comparing FEM-SPH and CEL for the 

example of a fluid filled container colliding with a wall: The computation time of the SPH 

model has been half of the CEL model. Therefore, the coupled FEM-SPH analysis has been 

chosen for the investigations in this paper. 

In the following, the simulation model for a pump with a metal housing, a neoprene 

impeller and fluid is discussed. The complexity of this problem is high because we consider 

the large deformation of the impeller, its highly nonlinear hyperelastic material behaviour, 

fluid flow and the coupling with the flexible structure.  Finally, numerical results obtained by 

ABAQUS are presented showing that the chosen method is suitable for the analysis and 

optimization of such problems in industrial applications. 
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2 SIMULATION MODEL 

2.1 Components and constitutive relations 

The simulation model consists of three parts: Housing, impeller and fluid. The metal 

housing is assumed to be much stiffer than the polymer impeller and is thus considered as a 

rigid body, discretized by rigid Finite Elements. 

As fluid we consider water with the dynamic viscosity 𝜂 = 1 ⋅ 10−9 Ns/mm² and density 

𝜌 = 1 kg/dm³. The speed of sound is set to 𝑐0 = 1.484 ⋅ 106 mm/s. For the water we use 

smoothed particles. With ABAQUS, a very comfortable definition of the particles is possible: 

First the fluid domain is discretized by 3D Finite Elements, and then ABAQUS computes the 

particles automatically according to the defined numerical parameters like number of particles 

per volume, kernel function, smoothing parameters, etc.  

The impeller is a solid body and discretized by solid 3D Finite Elements. The material 

behavior is represented by a hyperelastic model, viscoelastic behavior is not considered for 

the first step. In problems involving large deformations, contact and hyperelastic behavior the 

configuration of the Finite Element mesh plays an important role to obtain reliable results, i.e. 

a good convergence with reasonable computation time. Usually, in case of complicated 

geometry, large effort must be spent to define a mesh consisting mostly of hexahedral 

elements in the regions of critical stress and strains. Here, we deal with a quite simple 

geometry for which Figure 2 shows the mesh of the undeformed impeller and the housing. 

 

 
 

Figure 2: Mesh of undeformed impeller and housing 
 

The behavior of polymers highly depends on the specific composition. Here, we use an 

Ogden model of order three. In this model, the Helmholtz strain energy function is expressed 
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in terms of principal stretches 𝜆1, 𝜆2, 𝜆3. The square of the principle stretches, 𝜆𝑖
2, are the 

eigenvalues of the Cauchy-Green strain tensor 𝑪. The stress components are subsequently 

derived from the strain energy function. For modelling hyperelastic materials like neoprene it 

is suitable to decompose the strain energy function into an isochoric and volumetric part 

because the volumetric stiffness is much higher than the shear stiffness, cf Holzapfel [4]. 

According to ABAQUS documentation [5], the Ogden strain energy function is expressed as  

Ψ = ∑
2𝜇𝑖

𝛼𝑖
2 (𝜆̅

1
𝛼𝑖 + 𝜆̅

2
𝛼𝑖 + 𝜆̅

3
𝛼𝑖 − 3) + ∑

1

𝐷𝑖

(𝐽 − 1)2𝑖 ,

3

𝑖=1

3

𝑖=1

 

(1) 

where �̅�1, �̅�2, �̅�3 are the deviatoric principal stretches �̅�𝑖 = 𝐽−1/3𝜆𝑖 , and 𝐽 is the volume ratio, 

 𝐽 = 𝜆1𝜆2𝜆3. The parameters 𝜇𝑖, 𝛼𝑖 and 𝐷𝑖 are material coefficients, such that the initial shear 

modulus is 𝜇0 = ∑ 𝜇𝑖
3
𝑖=1  and the initial bulk modulus is 𝐾0 = 2/𝐷1. Note, that the squares of 

the modified principal stretches, �̅�𝑖
2, are the eigenvalues of the modified Cauchy-Green tensor 

�̅� = 𝐽2/3𝑪, representing the deviatoric part of strain, i.e.  �̅�1�̅�2�̅�3 = 1. 
Usually, material tests must be performed to obtain the material properties. In this theo-

retical study we use a parameter set provided by an industrial partner in a former study:  

𝛼1 = −4.101,   𝛼2 = 6.254,   𝛼3 = 1.091, 

𝜇1 = 0.0743,   𝜇2 = 0.01168,   𝜇3 = 1.3793, 

𝐷1 = 𝐷2 = 𝐷3 = 0.001. 

(2) 

To investigate this constitutive behavior for the basic load cases of uniaxial and biaxial 

tension, we use the assumption of an almost incompressible material, which is a good 

approximation for many polymers like neoprene.  In case of incompressibility the volume 

ratio is 𝐽 = 𝜆1𝜆2𝜆3 = 1, and the strain energy function reduces to 

Ψ = ∑
2𝜇𝑖

𝛼𝑖
2 (𝜆1

𝛼𝑖 + 𝜆2
𝛼𝑖 + 𝜆3

𝛼𝑖 − 3)

3

𝑖=1

. 
(3) 

The principal values of Cauchy stress are derived from this energy potential and can be 

expressed as a function of the principal stretches as, cf Holzapfel [4],  

σi = 𝜆𝑖

𝜕Ψ

𝜕𝜆𝑖

− 𝑝,  
(4) 

with the hydrostatic pressure 𝑝. In this formulation, pressure 𝑝 is a Lagrangian multiplier and 

follows from the condition of incompressibility, 𝜆1𝜆2𝜆3 = 1. 

For uniaxial tension, i.e. 𝜆1 = 𝜆, 𝜆2 = 𝜆3 = 𝜆−1/2, 𝜎 = 𝜎1, 𝜎2 = 𝜎3 = 0, we obtain  

σ = ∑
2𝜇𝑖

𝛼𝑖

(𝜆𝛼𝑖 − 𝜆−𝛼𝑖/2)

3

𝑖=1

,  
(5) 

and for the case of biaxial tension, i.e. 𝜆1 = 𝜆2 = 𝜆, 𝜆3 = 𝜆−2, 𝜎 = 𝜎1 =  𝜎2, 𝜎3 = 0,  

σ = ∑
2𝜇𝑖

𝛼𝑖

(𝜆𝛼𝑖 − 𝜆−2𝛼𝑖)

3

𝑖=1

.  
(6) 

Note, that Ogden-type models are implemented in most Finite Element codes providing the 
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ability to model hyperelasticity. One of the major benefits of this material law is the relative 

simple determination of the parameters from a uniaxial tension test.  

Using the numerical values in Eq. (2) we obtain the constitutive relations as shown in 

Figure 3. The left diagram shows Cauchy stress as a function of stretch and the right diagram 

Cauchy stress as a function of Hencky strain, which is the output variable in the subsequent 

Finite Element results. Note that for the considered impeller the expected order of magnitude 

for the maximum stretch is 50%, i.e. 𝜆𝑚𝑎𝑥~1.5.   
 

 

       
 
Figure 3: Cauchy stress for uniaxial and biaxial tension as a function of stretch (a) and Hencky strain (b) 

The interactions between the components of the pump are defined by a general contact 

model based on a penalty formulation, refer to ABAQUS online documentation [5] for more 

details. This kind of contact formulation is very efficient in the present situation, in which we 

deal with a high number of particles as well as contact closings and openings. 

For the simulation of the pump we first need to press the impeller into the housing as 

shown in Figure 1. In this first step, fluid flow is not yet considered, the impeller is fixed, and 

contact between blades and housing is not yet defined. The blades are deformed by 

kinematical boundary conditions, until they are inside the housing. In a second step, the 

boundary conditions between housing and impeller are defined and the kinematical boundary 

conditions of the blades are removed. Moreover, the rotation is activated by prescribing the 

angular velocity (=100 rad/s). The motion of the fluid is prescribed by a pressure boundary 

condition at the inlet. For the simulations the explicit solver of ABAQUS has been used.  

3 NUMERICAL RESULTS 

From the engineering point of view, the most interesting results are the distributions and 

maximum values for stress, strain and contact pressure between housing and impeller blades. 

Because of lifetime, the stress must not exceed a limit value. On the other hand, the contact 

pressure must be high enough for an appropriate sealing and to avoid leakage. Moreover, fluid 

flow is interesting because of the performance and efficiency of the pump. In the following, 

exemplary results are presented for these quantities. 
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3.1 Stress and strain in the impeller after installing it into the housing 

The first interesting results are the stress and strain distributions in the impeller after 

installing it into the housing. Figure 4 shows the v. Mises stress field. As expected, the 

maximum stress (1.45 N/mm²) is near the maximum curvature. Figure 5 shows the Hencky 

strain field, the maximum value is about 0.32, such that the maximum stretch is about 37%. 

Note that the deformation of the blade is like the bending of a beam. Thus, the state of stress 

is rather like the uniaxial case in Figure 3 than the biaxial one.  

 

Figure 4: Stress field (v.Mises) of the impeller after installing into the housing (without fluid flow) 

 

 
Figure 5: Hencky strain field after installing into the housing (with fluid flow) 
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3.2 Fluid transport 

Secondly, the interaction with the fluid is studied. Figure 6 shows the distribution of the 

Hencky strain in the impeller and the distribution of the fluid particles. It is obvious that 

centrifugal forces cause a concentration of the fluid near the wall of the housing. Figure 7 

shows the velocity field of impeller and fluid. We also see the acceleration of the fluid: The 

velocity of the fluid is rising near the outlet.  
 

 
Figure 6: Hencky strain in the impeller and fluid particles 

 

Figure 7: Velocity field of impeller and fluid 
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3.3. Contact pressure 

Finally, the contact pressure between impeller and housing is shown in Figure 8. A 

sufficient level of contact pressure is necessary for sealing and to avoid leakage. Figure 8 

shows that there is a homogeneous distribution of contact pressure for the radial contact 

surfaces, and that there are regions at the axial contact surfaces without contact pressure, i.e. 

contact openings. These clearances cause leakage and must be avoided. A possible solution is 

to add some material in these regions, so that the axial dimension of the impeller is slightly 

larger than this dimension of the housing. Then, contact pressure is achieved due to the 

compression of the impeller after installation into the housing.  

On the other hand, there are some regions of high contact pressure, represented by gray 

color. The high pressure is a consequence of the axial extension of the blades in the regions of 

radial compression due to bending of the blades. In contrast, on the back side of the blades 

there are radial tensile strains, and axial compressive strains cause a contact opening. Again, 

the distribution of the contact pressure may be optimized by an appropriate shape of the 

impeller: Removal of material in the regions of too high pressure and addition of material in 

the regions of contact opening. This optimization could be topic for a subsequent study. 

 

 

Figure 8: Contact pressure 

4 CONCLUSIONS 

It has been shown that it is possible to simulate the fluid convey in a pump with a 

hyperelastic impeller. The complexity of the problem is very high due to several severe 

nonlinearities. Thus, the computation time is also quite high. During the modelling phase, 

special care has been taken for generating a high-quality mesh. Once more, it has also turned 

Contact opening 
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out that the mesh quality is one of the most essential aspect for problems including large 

deformations, high material nonlinearity and contact.  Finally, with the appropriate mesh, the 

simulations have run very robust. For the presented example, physically plausible results have 

been obtained for answering important engineering questions: Stress, strain, contact pressure, 

flow velocity etc. The results also show smooth results for the distribution of these quantities. 

Finally, an optimization of the contact pressure distribution has been suggested by geometric 

adaptations of the impeller. All in all, the study shows that it is possible to analyze and 

optimize industrial problems with the presented strategy.  
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