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Abstract. The stability characteristics of the boundary layer developing over a wall-mounted 

hump are analysed by means of one-dimensional linear stability theory. The flow field around 

the hump geometry reproduces the behaviour encountered in the rear suction side of low-

pressure turbines, which features flow separation at low Reynolds numbers, significantly 

reducing turbine efficiency. By employing a time-averaged base flow obtained from laminar 

Navier-Stokes simulations, linear stability calculations are performed along different 

streamwise locations. An unstable disturbance is identified developing inside the boundary 

layer in a small region prior to flow separation. By extending the analysis to different 

frequencies, the most unstable frequency is also determined, which dominates the complete 

instability region. The characterization of the most unstable location and frequency provides 

the necessary data to perform an effective boundary layer tripping to promote the transition to 

turbulence and reduce flow separation. 
 

 

1 INTRODUCTION 

The advancement of the aerospace industry towards the development of more compact and 

versatile distributed-thrust power plants is constrained by the occurrence of flow separation in 

low-pressure turbine airfoils operating at high altitudes. At low Reynolds numbers (in the 

order of 𝑅𝑒 < 106, based on airfoil chord), the rear part of the suction side of the turbine 

airfoil can suffer flow separation, which increases viscous loses and significantly abates the 

turbine efficiency [1, 2]. Therefore, the presence of this phenomenon limits the lowest 

Reynolds number of engine operation, preventing the flight at higher altitudes and ultimately 
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reducing the flight envelope. With the purpose of boosting turbine performance at low 

Reynolds numbers, both passive and active flow separation control strategies have been 

developed [3]. 

Passive control techniques are mainly based on the use of geometrical elements to promote 

laminar to turbulent boundary layer transition, i.e. boundary layer tripping, as turbulent 

boundary layers are more resistant to detachment than those in laminar regime. For instance, 

Lake and co-authors [4] introduced the use of surface dimples, while Volino [5] studied the 

effect of using rectangular trips on the suction side, in both cases promoting transition to 

turbulence to delay separation and encourage flow reattachment. Without focusing on 

boundary layer tripping, Byerley et al. [6] proposed the use of Gurney flaps for controlling the 

laminar flow separation on turbine blades. By mounting the flaps near the training edge of the 

pressure side, the flow is forced to turn and accelerate through the internal passage directing it 

towards the suction side, where it reduces the adverse pressure gradient that triggers 

separation at low Reynolds conditions. Passive devices are able to provide a satisfactory 

control in numerous configurations. However, they usually also have a strong impact in 

turbine performance at higher Reynolds numbers, reducing performance at lower altitudes. 

Therefore, low Reynolds tailored turbine designs may prove to be inefficient during take-off, 

climb and landing operations. 

On the other hand, active flow control methodologies offer a much more flexible approach, 

without any impact on turbine performance when operating at higher Reynolds numbers. A 

summary of different periodic excitation methods for controlling flow separation is provided 

by Greenblatt & Wygnanski [7], ranging from approaches based on acoustic waves to 

boundary layer suction and ingestion. Single dielectric barrier discharge (DBD) plasma 

actuators have also been widely used for the suppression of flow separation. Huang et al. [8] 

employed DBD actuators in a linear cascade with effective results. Similarly, Göksel and co-

workers [9] looked into the impact on efficiency caused by the use of pulsed plasma actuators 

at different Reynolds numbers. The lower the Reynolds number, the more effective the 

control achieved. 

An accurate prediction of transition onset is fundamental to perform effective flow control 

towards the abatement of separation. Nowadays, linear stability theory is progressively 

consolidating as a practical tool to predict transition in real-world applications [10, 11]. In the 

context of laminar boundary layer separation, it can be applied to estimate the optimal flow 

control locations based on a pure theoretical approach, without the need to rely on empirical 

correlations. 

In this work the stability of the boundary layer developing over a wall-mounted hump 

geometry is analysed by means of linear stability theory. The hump geometry considered 

induces a flow field that mimics the flow behaviour encountered on the suction side of a low-

pressure turbine airfoil, where boundary layer detachment occurs at low Reynolds numbers 

while no separation takes place for high Reynolds numbers. The shape of the hump is 

designed using a Bézier curve, which provides a smooth and continuous geometry that does 

not impose any constraint in the location of the flow separation region, allowing it to be fully 

governed by the flow similarity parameters. Linear stability calculations are performed on a 

base flow at a low Reynolds number obtained by means of a laminar Navier-Stokes numerical 

solution. The instabilities developing in the boundary layer prior to flow separation are 

identified and characterized over a range of different frequencies. This information allows the 
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identification of the most favourable region to disturb the boundary layer as well as the 

optimal actuation frequency to effectively trigger transition and reduce flow separation. 

2 GOVERNING EQUATIONS 

The governing equations employed in this study are the Navier-Stokes equations for a two-

dimensional Newtonian fluid. No assumptions are made regarding the compressibility of the 

fluid, so the full system of equations is considered. The primitive flow variables are density 𝜌, 

pressure 𝑝, temperature 𝑇 and velocity 𝑢𝑖, with 𝑖 = 1, 2. In a Cartesian frame of reference, the 

conservation form of the equations can be expressed as 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0, (1) 

𝜕(𝜌𝑢𝑖)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
+

𝜕𝑝

𝜕𝑥𝑖
−

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
= 0, (2) 

𝜕(𝜌𝐸)

𝜕𝑡
+

𝜕(𝜌𝐸𝑢𝑖 + 𝑝𝑢𝑖)

𝜕𝑥𝑖
+

𝜕𝑞𝑖

𝜕𝑥𝑖
−

𝜕(𝑢𝑖𝜏𝑖𝑗)

𝜕𝑥𝑗
= 0, (3) 

where 𝑡 is the time coordinate and 𝑥𝑖 is the 𝑖th spatial coordinate. The viscous stress tensor 𝜏𝑖𝑗 

satisfies the following relationship 

𝜏𝑖𝑗 = 𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

2

3

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗), (4) 

in which 𝜇 is the dynamic viscosity of the fluid and 𝛿𝑖𝑗 is the Kronecker delta. The total 

energy of the fluid, denoted by 𝐸, is defined as 𝐸 = 𝑒 + 𝑢𝑖𝑢𝑖/2, with 𝑒 being the specific 

internal energy. The conductive heat flux vector 𝑞𝑖 is related to the fluid temperature by 

means of Fourier’s law, given by 𝑞𝑖 = −𝑘 𝜕𝑇 𝜕𝑥𝑖⁄ , where 𝑘 denotes the thermal conductivity 

of the fluid. Assuming a calorically perfect gas, the internal energy of the fluid is defined as 

𝑒 = 𝑐𝑣𝑇, with 𝑐𝑣 denoting the specific heat at constant volume, which can be directly 

determined from the specific gas constant 𝑅 and the ratio of specific heats 𝛾 = 𝑐𝑝/𝑐𝑣 using 

𝑐𝑣 = 𝑅/(𝛾 − 1). Standard values for air are considered, namely, 𝑅 = 287.18 J/(kg⋅K) and 

𝛾 = 1.4. The system is closed through the perfect gas equation of state, expressed as 𝑝 =
𝜌𝑅𝑇. Sutherland’s law is employed to model the variation of the dynamic viscosity with 

temperature: 

𝜇 = 𝜇𝑟𝑒𝑓 (
𝑇

𝑇𝑟𝑒𝑓
)

3 2⁄

(
𝑇𝑟𝑒𝑓 + 𝑆𝜇

𝑇 + 𝑆𝜇
), (5) 

where 𝑆𝜇 is the Sutherland temperature constant and 𝜇𝑟𝑒𝑓, 𝑇𝑟𝑒𝑓 are respectively the reference 

dynamic viscosity and static temperature. In the numerical results presented in this work the 

following values are used: 𝜇𝑟𝑒𝑓 = 1.716 × 10-5 kg/(m⋅s), 𝑇𝑟𝑒𝑓 = 273.11 K and 𝑆𝜇 = 111 K. 

The same law is also employed to take into account the variation of thermal conductivity with 

temperature, in this case with the parameters 𝑘𝑟𝑒𝑓 = 2.41 × 10-2 W/(m⋅K) and 𝑆𝑘 = 194 K at 
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the same reference temperature. 

2.1 Formulation of the one-dimensional linear stability problem 

The stability analysis performed in this work is based on classical linear stability theory 

(LST) [12]. The instantaneous flow field 𝐪 = [𝑢, 𝑣, 𝑇, 𝑝]𝑇 is split into a steady reference state 

𝐪̅, also known as base flow, and a small unsteady perturbation field 𝐪̃: 

𝐪 = 𝐪̅ + 𝜖𝐪̃, (6) 

with 𝜖 ≪ 1. The base flow is also assumed to be locally parallel in the streamwise (𝑥) 

direction, so that 𝐪̅ = 𝐪̅(𝑦) at a given 𝑥 station. Since the base flow is two-dimensional, the 

amplitude of the perturbations is a function of the wall-normal (𝑦) coordinate only, and 

homogeneity is imposed in the spanwise (𝑧) and streamwise (𝑥) spatial directions and in time. 

For this configuration, the ansatz describing the perturbations takes the form 

𝐪̃ = 𝐪̂(𝑦) exp[𝑖(𝛼𝑥 + 𝛽𝑧 − 𝜔𝑡)] + 𝑐. 𝑐., (7) 

where 𝐪̂ is the one-dimensional amplitude function, 𝛼 and 𝛽 are respectively the 

wavenumbers along the streamwise and spanwise directions, 𝜔 is the angular frequency and 

𝑐. 𝑐. denotes the complex conjugate. In this study the interest lies in the spatial evolution of 

the perturbations along the streamwise direction, hence a spatial stability approach is adopted. 

The temporal frequency 𝜔 and the spanwise wavenumber 𝛽 are fixed to real values, whereas 

𝛼 is a complex number, 𝛼 = 𝛼𝑟 + 𝑖𝛼𝑖. The real part (𝛼𝑟) represents the streamwise 

wavenumber of the perturbation and the imaginary part (𝛼𝑖) its spatial growth rate. 

The governing equations of the linear stability problem are obtained by substituting the 

splitting given by equation (6) into the full Navier-Stokes system (equations (1) to (3)), 

making use of the ansatz in equation (7) and neglecting the nonlinear terms, namely, the terms 

of order 𝑂(𝜖2) or higher. The resulting system of linear differential equations can then be 

expressed in the following matrix form 

𝐀𝐪̂ = 𝛼𝐁𝐪̂ + 𝛼2𝐂𝐪̂, (8) 

where 𝐀, 𝐁 and 𝐂 are complex differential matrix operators. Their specific structure is 

provided for instance in the study of Pinna [13]. To improve the conditioning of the system, 

the equations are made nondimensional by introducing the following dimensionless quantities 

𝑡∗ =
𝑡𝑢𝑒

𝑙
, 𝑥𝑖

∗ =
𝑥𝑖

𝑙
, 𝜌∗ =

𝜌

𝜌𝑒
, 𝑢𝑖

∗ =
𝑢𝑖

𝑢𝑒
, 

𝑝∗ =
𝑝

𝜌𝑒𝑢𝑒
2

, 𝐸∗ =
𝐸

𝑢𝑒
2

, 𝑇∗ =
𝑇

𝑇𝑒
, 𝜇∗ =

𝜇

𝜇𝑒
, 𝑘∗ =

𝑘

𝑘𝑒
, 

(9) 

in which the subscript 𝑒 denotes the boundary layer edge properties, used as reference 

quantities for the nondimensionalization. The parameter 𝑙 is the Blasius length scale evaluated 

at the streamwise position where the stability problem is solved, given by 𝑙 = √𝜇𝑒𝑠/𝜌𝑒𝑢𝑒. In 

this definition, the coordinate 𝑠 is the integrated streamwise distance along the body surface 

associated to a given streamwise location 𝑥, also known as arc length. 

The discretization of equation (8) leads to an algebraic generalized eigenvalue problem 

(GEVP) which is nonlinear in the eigenvalue 𝛼. Its linearization is achieved by introducing 
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the following auxiliary vector: 𝐪̂+ = [𝑢̂, 𝑣, 𝑇̂, 𝑝̂, 𝛼𝑢̂, 𝛼𝑣, 𝛼𝑇̂, 𝛼𝑝̂]𝑇, so that the problem 

becomes 

𝐀+𝐪̂+ = 𝛼𝐁+𝐪̂+, (10) 

with 

𝐀+ = [
𝐀 −𝐁
𝟎 𝐈

]    and    𝐁+ = [
𝟎 𝐂
𝐈 𝟎

], (11) 

where 𝐈 is the identity matrix. This linearization procedure is known as the matrix companion 

method [14]. It is important to bear in mind that it duplicates the size of the system to be 

solved. 

3 NUMERICAL METHODOLOGY 

3.1 Calculation of the base flow 

The computational domain of the problem under study is represented in Figure 1. The 

geometry of interest is the wall-mounted hump shown in the bottom surface of the domain. 

The hump is defined by a Bézier curve that ensures a continuous and smooth surface. This 

geometry reproduces the physical behaviour of the flow field in the rear suction side of a low-

pressure turbine, which features flow separation at low Reynolds numbers. The use of such a 

geometry is advantageous for performing fundamental studies. On one side the fact of being a 

wall-mounted geometry is convenient for experimental analyses in a linear test section, on the 

other, the smooth surface ensures that the dynamics of the flow separation are not altered by 

any geometrical discontinuities, such as the case of a backward facing step, allowing the flow 

behaviour to be fully governed by the flow similarity parameters. For comparison against 

future experimental studies, the dimensions of the computational domain coincide with the 

size of the linear test section at the Purdue Experimental Turbine Aerothermal Laboratory 

wind tunnel facility [15]. As a result, both the top and bottom surfaces of the domain are 

treated as isothermal walls at room temperature. 

The inflow conditions considered for the numerical solution are summarized in Table 1. 

They are completely defined by fixing the total pressure (𝑝0) and total temperature (𝑇0) at the 

domain inlet and the static pressure at the domain outlet (𝑝𝑜𝑢𝑡). For the sake of clarity, the 

associated freestream Mach number (𝑀∞) and static temperature (𝑇∞) that would be achieved 

in an external flow at the same stagnation conditions are also provided, estimated by means of 

the flow relations 𝑝0/𝑝∞ = [1 + 0.5(𝛾 − 1)𝑀∞
2 ]𝛾 𝛾−1⁄  and 𝑇0/𝑇∞ = 1 + 0.5(𝛾 − 1)𝑀∞

2  with 

𝑝∞ = 𝑝𝑜𝑢𝑡. Additionally, the corresponding freestream unit Reynolds number (𝑅𝑒∞/𝑙) is also 

shown. 

 
Table 1: Inflow conditions for the numerical solution of the base flow. 

 

𝑝0 [Pa] 𝑇0 [K] 𝑝𝑜𝑢𝑡 [Pa] 𝑀∞ 𝑇∞ [K] 𝑅𝑒∞/𝑙 [1/m] 

101710 500 101325 0.074 499.46 8.73 × 105 
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     The two-dimensional numerical solution of the base flow needed for the stability analysis 

is carried out by means of an unsteady and laminar simulation of the full Navier-Stokes 

equations, using the commercial CFD package CFD++ and employing a block-structured grid 

consisting of quadrilateral cells. An unsteady solver is considered to account for the unsteady 

wake induced downstream of the hump when flow separation is present. The spatial 

discretization is based on a second-order upwind finite volume scheme, whereas time 

integration is performed using a second-order implicit scheme with multigrid acceleration. 

The solution is integrated in time with a time step of Δ𝑡 = 0.001 s until the time-averaged 

residual converges to a constant value. 

The boundary conditions of the numerical setup are also shown in Figure 1. At the top and 

bottom boundaries a no-slip isothermal wall boundary condition is enforced, with a wall 

temperature of 𝑇𝑤 = 300 K. At the inlet of the domain, stagnation conditions are imposed by 

fixing the total pressure (𝑝0) and the total temperature (𝑇0). Finally, at the domain outlet the 

static pressure (𝑝𝑜𝑢𝑡) is imposed by means of a pressure outlet boundary condition. With 

respect to the initial conditions, all the flow field is initialized with the freestream values 

given in Table 1. It is important to note that even if the inflow Mach number is very low, the 

temperature gradient imposed due to the difference between the freestream temperature and 

the wall temperature can generate a significant density variation across the boundary layer. 

For this reason, the full compressible Navier-Stokes equations are considered for this 

problem. 

To ensure a proper resolution of the base flow needed for the stability analysis, well-

resolved boundary layer profiles have to be extracted from the CFD solution. To avoid the 

need for interpolation of the results, a computational grid normal to the wall along the hump 

surface was designed. The control of every mesh line in the wall-normal direction was 

achieved by scripting the mesh generation software GAMBIT. To achieve a good resolution 

of the boundary layer while maintaining a reasonable computational effort, the grid is linearly 

stretched towards the wall, both in the top and bottom boundaries. The final grid used for the 

base flow solution has a first cell height of 4.26×10-6 m, which ensures that 𝑦+ < 1 in all the 

domain. The number of cells in the wall-normal direction is 1000 while for the horizontal 

direction 1500 cells are employed, resulting in a total count of 1.5 million cells. 

Figure 1: Representation of the computational domain and boundary conditions employed for obtaining the 

numerical solution of the base flow. The hump geometry is shown in blue, corresponding to the bottom 

boundary. 
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3.2 Solution of the linear stability problem 

The solution of the generalized eigenvalue problem (equation (12)) resulting from the 

linear stability formulation is carried out by means of the von Karman Institute Extensible 

Stability & Transition Analysis (VESTA) toolkit [16]. The structure of the matrices 𝐀, 𝐁 and 

𝐂 is automatically derived and implemented in MATLAB for each particular configuration 

using the Maxima computer algebra system. The discretization of the system is achieved 

using the Chebyshev collocation method, which provides spectral-like accuracy. This 

technique is based on a Lagrange polynomial interpolation in a nonuniform structured grid 

given by the Chebyshev-Gauss-Lobatto collocation points. The computational domain for the 

one-dimensional stability analysis considered here is a wall-normal line containing the 

discrete boundary layer profile at any specific streamwise location. However, the collocation 

points are defined on a transformed domain with a wall-normal coordinate 𝜂 ∈ [1, -1], which 

does not coincide with the geometrical configuration under study. As a result, an appropriate 

mapping technique has to be employed in order to transform the set of collocation points to 

the physical domain. In this case, the classical mapping originally introduced by Malik [17] is 

applied, which allows the division of the stability domain into two regions, placing half of the 

collocation points in each of them. Denoting the local wall-normal coordinate by 𝑦𝑛, the 

transformation can be expressed as 

𝑦𝑛 =
𝑦𝑛,𝑖𝑦𝑛,𝑚𝑎𝑥(1 + 𝜂)

𝑦𝑛,𝑚𝑎𝑥 − 𝜂(𝑦𝑛,𝑚𝑎𝑥 − 2𝑦𝑛,𝑖)
, (12) 

where 𝑦𝑛,𝑚𝑎𝑥 is the maximum coordinate of the stability domain and 𝑦𝑛,𝑖 is the coordinate 

where the number of discrete points is split in half. 

To complete the definition of the discrete GEVP, boundary conditions must be imposed on 

the amplitude of the perturbations 𝐪̂. At the wall, the disturbances are forced to satisfy the no-

slip condition by setting the velocity perturbations equal to zero. This is accomplished by 

means of a homogeneous Dirichlet boundary condition. The temperature disturbance at the 

wall is also imposed to be zero, whereas the pressure perturbation is determined with a 

compatibility condition based on the wall-normal momentum equation at 𝑦𝑛 = 0. In the wall-

Figure 2: Time-averaged streamwise velocity contours of the obtained base flow solution. 
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normal far-field boundary, that is 𝑦𝑛 = 𝑦𝑛,𝑚𝑎𝑥, the perturbations are forced to decay by 

imposing once again homogeneous Dirichlet boundary conditions on  𝑢̂, 𝑣 and 𝑇̂ and a 

compatibility condition on 𝑝̂. 

The numerical method used to solve for all the eigenvalues and eigenvectors of the 

problem is the classical QZ algorithm. This algorithm has a reasonable computational cost for 

solving the one-dimensional stability problem at one specific location and frequency. 

Nevertheless, it becomes expensive for studying the evolution of the instability modes at 

different positions and for a range of different frequencies. For this purpose, a local 

eigenvalue solver is used, based on the Newton-Raphson iterative algorithm, which tracks the 

evolution of a single mode along a desired range of conditions. A description of the current 

solver implemented in VESTA toolkit as well as different validation cases can be found in the 

work of Pinna [13]. 

4 RESULTS 

Under the configuration described in section 3.1, the numerical solution of the problem 

reveals that the flow undergoes separation at the chosen Reynolds number, leading to an 

unsteady wake behind the hump. Although the flow field upstream of the detachment does not 

present significant changes with time, linear stability theory assumes a steady base flow. For 

this reason, a time-averaged solution is computed using 400 different time steps after the 

averaged residual converges to constant value. The resulting time-averaged solution is 

depicted in Figure 2, which shows contours of streamwise velocity 𝑢. This solution was 

obtained with the computational grid described in section 3.1. As it can be observed, as the 

flow reaches the beginning of the hump, a small recirculation region appears around 𝑥 = 0.05 

m due to the blockage induced by the geometry. Next, the flow accelerates all the way up 

until reaching the top of the hump, where an adverse pressure gradient is encountered that 

leads to flow separation. The flow remains separated downstream for remaining portion of the 

computational domain. The flow separation location is estimated from the skin friction 

coefficient 𝑐𝑓 at the hump wall, when 𝑐𝑓 ≈ 0. For the conditions investigated here, the 

separation inception takes place at 𝑥 ≈ 0.1101 m (𝑠 ≈ 0.1198 m). 

4.1 Linear stability analysis 

Recalling the methodology described in section 3.2, linear stability calculations are 

performed in the flow-field prior to boundary layer detachment. The boundary layer profiles 

at each desired location are extracted from the base flow solution in the wall-normal mesh and 

nondimensionalized as described in section 2.1. The reference quantities for 

nondimensionalization are obtained from a numerical solution of the inviscid flow field, 

which is accomplished by solving the Euler equations, once again using the software CFD++. 

Following the classical approach in boundary layer theory, the boundary layer edge properties 

at each streamwise location are assumed to be the wall values computed from the inviscid 

solution. The stability domain has a height of 𝑦𝑛,𝑚𝑎𝑥 = 0.025 m to ensure that the upper 

boundary is far enough for the perturbations to decay to zero. Regarding the mapping 

parameter 𝑦𝑛,𝑖, it is locally chosen such that half of the discretization points are placed below 

a 75% of the boundary layer thickness. This is achieved by imposing 𝑦𝑛,𝑖 = 0.75𝛿99, where 
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𝛿99 is the local boundary layer thickness, determined by means of the total enthalpy (𝐻) when 

𝐻/𝐻𝑒 = 0.995, with 𝐻𝑒 = 𝑐𝑝𝑇0. 

Due to the favourable pressure gradient that characterizes the acceleration region, the 

boundary layer remains stable for most of the distance along the hump surface. However, an 

instability has been identified in a small region upstream of the separation point. The exact 

location depends on the frequency considered, as will be shown later. On first place, the result 

of the stability calculation at one location and frequency inside the unstable region is 

presented, with the purpose of illustrating the topology of the spectrum and the associated 

amplitude functions. Figure 3(a) shows the spatial stability spectrum obtained at 𝑥 = 0.1091 

m and at a frequency of 𝑓 = 4 kHz when assuming two-dimensional perturbations, i.e. 𝛽 = 0. 

Different grid resolutions 𝑁𝑦 were tested to check for grid convergence and identify the 

location of continuous, discrete and spurious numerical modes. Two different discretized 

vertical continuous branches can be observed, one of them located at 𝛼𝑟𝑙 = 0 (poorly resolved 

in the current figure scale) and another one at 𝛼𝑟𝑙 ≈ 0.2. These branches are a characteristic 

feature of the stability domain. According to Balakumar and Malik [18], the branch at 𝛼𝑟𝑙 ≈ 

0.2 is associated with vorticity waves whereas the branch along the imaginary axis represents 

acoustic waves. A spurious mode can also be observed on top of the continuous vertical 

branch that begins at the real axis, which does not show any grid convergence. This mode is 

of purely numerical nature and is associated to the discretization error inherent to the 

numerical scheme in use. 

The physically interesting information corresponds to the discrete modes. In this case, a 

single unstable discrete mode is retrieved, clearly visible at 𝛼𝑟𝑙 ≈ 0.53, which is fully 

converged with 𝑁𝑦. Figure 3(b) displays the amplitude functions of the different perturbation 

variables associated with the identified unstable discrete mode. A strong similarity is obtained 

with the signature amplitude shape of Tollmien-Schlichting waves [19], which constitute the 

natural instability mechanism developing in the linear stage of the transition process for flat 

plate boundary layers. It is also interesting to note that the amplitude of the temperature 

perturbation (𝑇̂) is of the same order of magnitude as the one of the streamwise velocity 

perturbation (𝑢̂), reflecting the strong impact of the temperature gradient in the base flow and 

Figure 3: (a) Spatial stability spectrum obtained at 𝑥 = 0.1091 m and 𝑓 = 4 kHz. (b) Magnitude of the 

amplitude functions for the most unstable mode identified (case with 𝑁𝑦 = 151). 

(a) (b) 
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highlighting the importance of analysing this problem with the compressible Navier-Stokes 

equations. Different values of 𝛽 were also tested to assess the behaviour of three-dimensional 

disturbances. However, at all the conditions investigated the most unstable modes were 

obtained for 𝛽 = 0. This is in agreement with Squire’s theorem [19], which states that for 

incompressible shear flows the most unstable disturbances are always two-dimensional. This 

is not a surprising result given that the inflow conditions considered here lead to a low-speed 

flow. 

To characterize the boundary layer instability for the problem under study, the streamwise 

evolution of the identified instability mode is analysed by means of the local stability 

algorithm for a range of different frequencies. This information allows the computation of the 

integrated logarithmic amplification rate (𝑁-factor) for each frequency, defined as 

𝑁 = ∫ −𝛼𝑖

𝑠

𝑠0

𝑑𝑠, (13) 

where 𝑠0 is the first location at which the perturbations become unstable, i.e. immediately 

after crossing the neutral stability curve. This data can then be used to obtain the 𝑁-factor 

envelope curve, employed for transition prediction in the so-called 𝑒𝑁 method [20]. Figures 

4(a) and 4(b) respectively show the evolution of the growth rate and the computed 𝑁-factors 

for the least stable mode along the region 𝑥 ∈ [0.1, 0.12] m (𝑠 ∈ [0.1093, 0.1296] m) and for 

different frequencies in the range 𝑓 ∈ [1, 9] kHz. The final location investigated, 𝑥 = 0.12 m, 

has been chosen according to the fact that further downstream the boundary layer is fully 

detached and the stability approach employed in this work is not able to provide physically 

meaningful results. On the other side, 𝛽 = 0 is once again considered. As it can be observed, 

the boundary layer is initially stable at all the studied frequencies. Then, the growth rate 

progressively increases at different rates for each frequency, eventually becoming unstable for 

all the frequencies examined below 9 kHz. The most unstable disturbance is obtained for 𝑓 = 

4 kHz. For these conditions, the boundary layer becomes unstable around 𝑥 ≈ 0.1081 m, 

which is before the starting point of separation. This frequency also delivers the highest 𝑁-

Figure 4: (a) Evolution of the growth rate of the least stable mode along 𝑥 ∈ [0.1, 0.12] m for different 

frequencies in the range 𝑓 ∈ [1, 9] kHz. (b) Associated integrated logarithmic amplification factors (𝑁-

factors). 

 

(a) (b) 
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factor for all the region under analysis, reaching a value of 𝑁 ≈ 7.8. As a result, a frequency 

of 𝑓 = 4 kHz should be the choice for introducing a disturbance inside the boundary layer in 

the region examined. For the tripping to as effective as possible, the trip location should be 

placed somewhere between 𝑥 ≈ 0.1081 m and 𝑥 ≈ 0.1185 m, which is the range for which the 

mode is unstable and is progressively destabilizing, namely, its growth rate is still growing 

with 𝑥. 

5 CONCLUSIONS 

The stability characteristics of the boundary layer developing over a wall-mounted hump 

geometry at low-Reynolds conditions have been investigated by means of one-dimensional 

linear stability theory (LST). This geometry mimics the flow behaviour encountered in the 

suction side of low-pressure turbines, where flow separation occurs at low Reynolds numbers, 

significantly decreasing turbine efficiency. An appropriate control of boundary layer 

transition can reduce flow separation under such conditions. Linear stability theory provides a 

purely theoretical approach that can be employed to estimate the location and frequency for 

performing an optimal boundary layer tripping, necessary for an effective flow separation 

control based on boundary layer transition. 

The base flow needed for the stability analysis was obtained through a laminar and 

unsteady Navier-Stokes simulation carried out in a wall-normal structured grid. At the 

conditions considered, the flow field undergoes separation around the top of the hump 

geometry, producing an unsteady wake downstream. The spatial linear stability calculations 

performed indicate the presence of an unstable mode growing inside the boundary layer in a 

small region prior to flow separation. By solving the stability problem at different streamwise 

locations and frequencies, the optimal actuation location and the most unstable frequency are 

identified. This frequency is also found to be the dominant frequency for all the streamwise 

locations investigated. 
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