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Abstract. In this study, numerical simulations of binary droplet collisions of two GNF
droplets are carried out. Navier-Stokes equations are solved for fluid motion both inside
and outside of the droplet using a conservative level-set/finite-volume approach. On head-
on collision of equal-sized droplets, implementation of symmetry boundary condition along
with ghost nodes are used to mimic the behavior of the droplet colliding an image of itself
while only one-eight of the domain being solved. A novel lamella stabilization approach
is used which enables us to simulate extreme collision cases in relatively coarse meshes.
The results are compared with available experimental and numerical results.

1 INTRODUCTION

The droplet collision phenomena is of relevance to many natural and industrial appli-
cations, including raindrop and cloud formation, spray coating, combustion and ink-jet
printing. In many of these applications, the droplets exhibit non-Newtonian behavior.
Droplet collision has been subject of numerous investigations, including experimental,
analytical and numerical studies. The numerical simulation of multiphase flows is a chal-
lenging topic regarding the issues related to the tracking of interfaces, mass conservation
of the droplet, and instabilities encountered by large density ratio and surface tensions.

Different experimental studies of the head-on and off-center collisions of droplets have
been reported in literature. [1] studied the binary collision of the water droplets for dif-
ferent size ratios. They identified two different types of separating collisions, i.e. reflexive
and stretching separations. [2] studied the collision of an ethanol droplet with a water
droplet. [3] studied the transition between different collision outcomes. Despite the inter-
esting break-throughs done in these works, the provided images lake the sufficient time
resolution and information describing the nature of the collision.
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Numerical simulations can provide significant details on the nature of collision which
are difficult or impossible to capture experimentally. For example extracting the velocity
and vorticity fields in numerical simulations are easily done while it requires expensive
equipments in experimental studies. In addition, the flexibility of numerical simulations
on implementing different fluid properties make them more interesting on studying the
fluid flows. Different numerical approaches are used to study the nature of binary droplet
collisions, including Lattice Boltzmann (LB), front tracking (FT), level-set (LS), smoothed
particle hydrodynamic (SPH), and volume of fluid (VOF) methods [4, 5, 6, 7, 8].

In this paper, we study the possibility of a general framework on simulation of binary
collision of GNF droplets using a finite-volume discretization of conservative level-set
method as introduced by [9]. The rest of the present paper is organized as follow: The
mathematical formulation is presented in Section 2 . Numerical methods are described
in Section 3. Model validation and numerical experiments are presented in Section 4 .
Finally, concluding remarks are discussed in Section 5.

2 MATHEMATICAL FORMULATION

Navier-Stokes equations are used to describe the conservation of mass and momentum
of two incompressible immiscible GNF fluids on a spacial domain of Ω with boundary of
∂Ω. These governing equations are as following [9]:

∂

∂t
(ρv) +∇.(ρvv) = −∇p+∇.

[
µ(γ̇)

(
∇v + (∇v)T

)]
+ ρg + σκnδΓ in Ω (1)

∇.v = 0 in Ω (2)

where ρ is density of the fluids, v is the velocity field, p pressure field, g gravitational
acceleration and δΓ is the Dirac delta function concentrated at the interface (Γ). Also n is
the unit normal vector outward to interface, κ is the interface curvature, σ is the interface
tension coefficient and µ(γ̇) is the dynamic viscosity of the GNF fluid. For Newtonian
fluids, µ(γ̇) = µ is used and for non-Newtonian shear-thinning fluids a Carreau-Yasuda
model is used as below:

µ(γ̇) = µ∞ + (µ0 − µ∞) (1 + (λγ̇)a)(n−1)/a (3)

Where µ0 and µ∞ are dynamic viscosity at zero and infinite shear rates, respectively, n
is a power-law index, and a=0.557 is a parameter which controls the transition between
zero shear rate and the power-law regime [10]. In this formulation λ is a time constant
calculated as follows:

λ = 250π

√
ρD3

8σ
(4)

Mass, density and viscosity can be defined as scalar-fields inside the whole domain as
follows:

ρ = ρ1H + ρ2(1−H) (5)

µ = µ1H + µ2(1−H) (6)

2
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where H is the Heaviside step function which takes the value one in dispersed phase and
zero elsewhere. The µ1 and µ2 values in each phase are calculated based on the related
GNF model. In this research conservative level-set (CLS) method [11], as introduced by
Balcázar et. al. [9] is used. Conservative LS method employs a regularized indicator
function φ as below:

φ(x, t) =
1

2

(
tanh

(
d(x, t)

2ε

)
+ 1

)
(7)

where ε is the parameter that sets the thickness of the interface. φ varies from 0 in one
fluid to 1 in other fluid. velocity vector field, v, provided from solution of Navier-Stokes
equations is used to advect the level-set function [9, 11]:

∂φ

∂t
+∇.φv = 0 (8)

In order to keep the profile and thickness of the interface constant, an additional re-
initialization equation [12] is used:

∂φ

∂τ
+∇.φ (1− φ) nτ=0 = ∇.ε∇φ (9)

which is advanced in pseudo-time τ . Normal vector n on the interface and curvature k of
the interface, are obtained using [9]:

n =
∇φ
||∇φ||

(10)

k(φ) = −∇.n (11)

The continuous surface force model (CSF) [13] is used for surface tension computation
which converts the term σκnδΓ in Eq. 1 to a volume force term as follows:

σκnδΓ = σκ(φ)∇φ (12)

3 NUMERICAL METHOD

Finite-volume (FV) approach is used to discretize the Navier-Stokes and level-set equa-
tions. collocated grid arrangement is used in discretization of the domain where all the
computed variables are stored at cell centers [9].

A central difference (CD) scheme is used to discretize the diffusion term of the momen-
tum and compressive term of re-initialization equation (9). A distance-weighted linear
interpolation is used to calculate the face values of physical properties and interface nor-
mals. The gradients are computed at the cell centroids using the least-squares method.
In order to improve the numerical stability of the solver, a total-variation Diminishing
(TVD) SUPERBEE flux limiter is used to discretize the convective term as implemented
in [9]. A classical fractional step projection method as described by [14] is used to solve
the velocity-pressure coupling. The solution procedure is as follows:
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- Physical properties, interface geometric properties and velocity field are initialized.

- Allowable time step limited by CFL conditions is calculated.

- The advection equation (8) is integrated in time with a 3-step third order accurate
TVD Runge-Kutta scheme [15].

- The re-initialization equation (9) is integrated in pseudo time (τ) using a third order
accurate TVD Runge-Kutta scheme. One iteration is used to solve the discretized
form of this equation.

- Physical properties in the domain (density and viscosity) and geometrical properties
at the interface (curvature and interface normal) are updated from the level-set and
shear fields.

- The velocity and pressure fields are calculated using fractional-step method. In this
formulation, the first step is to calculate the predicted velocity v. Fully explicit
second-order Adam-Bashforth method is used to discretize the prediction step:

ρv∗ − ρnvn

∆t
=

3

2
(Rv

v)
n − 1

2
(Rv

v)
n−1 (13)

where Rv
v = −Ch(ρv)+Dh(v)+ρg+σκ∇h(φ). In this equation Ch(ρv) = ∇h.(ρvv)

is the convective operator, Dh(v) = ∇h.
[
µ(γ̇)(∇hv +∇T

hv)
]

is the diffusion oper-
ator and ∇h is the gradient operator. In the next step, pressure field is calculated
by solving the Poisson equation:

∇h.

(
1

ρ
∇h(p

n+1)

)
=

1

∆t
∇h.(v

∗) (14)

The resulting velocity v∗does not satisfy the continuity equation and needs to be
corrected by:

vn+1 = v∗ − ∆t

ρ
∇h(p

n+1) (15)

- repeat to reach the desired time.

The numerical methods are implemented in an in-house parallel c++/MPI code called
TermoFluids [16]. Validations and verifications of the numerical methods used in this
work are reported in [9, 17, 12, 18, 19, 20].
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Figure 1: We-I diagram for collision outcome regimes

4 RESULTS AND DISCUSSION

Experimental droplet collision studies are providing us with different correlations to
understand what is the outcome of droplets collision. The main parameters are the surface
tension coefficient σ, liquid viscosity µl, liquid density ρl, droplets relative velocity Urel,
and the impact parameter I. The following non-dimensional parameters are thus defined
by most authors to characterize the droplet’s collision:

We =
ρdUrel

2D

σ
, Re =

ρdUrelD

µl
, Oh =

µd√
ρdσD

, I =
b

D
(16)

where We is the Weber number, Oh is the Ohnesorge number, D is the droplet di-
ameter. Note that d stands for the droplet. The impact parameter I characterizes the
eccentricity of the collision with b the inter-center distance of droplets. Collision regimes
usually classifies in five main regimes as depicted in We-I diagram of figure 1:
a. coalescence after minor deformation
b. bouncing
c. coalescence after substantial deformation
d. coalescence followed by separation for near head-on collisions (Reflexive separation)
e. coalescence followed by separation for off-center collisions (Stretching Separation)

During the collision process, a thin gas film is formed between the droplets. The
consistency of this gas film during the collision process results in bouncing and rupture
of it results in coalescence of the droplets. The thickness of this gas film is in the order
of nanometers. Numerical resolution of this gas film requires numerical simulations in
molecular levels such as Molecular Dynamics (MD) techniques and CFD simulation of
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Figure 2: Illustration of the implemented ghost nodes and symmetry plane, along with two possible
implementations of level-set boundary condition in ghost nodes. Left: Neumann BC. Right: Dirichlet
BC.

it is almost impossible. In this study we have used ghost nodes to control the gas film
rupture for cases of regimes a, b and c. For these cases, instead of collision of two
droplets, collision of a droplet to a symmetry wall with ghost nodes is studied. Figure
2 illustrates the concept of ghost nodes in determining the droplet collision outcome.
Implementing the Neumann boundary condition for level-set function in the ghost nodes,
imitates the rupture of the gas film, resulting in coalescence of the droplets. On the
other hand, Implementing the Dirichlet boundary condition for level-set function in these
nodes imitates the persistence of gas film and thus bouncing of droplets. Changing the
boundary condition of level-set function in these ghost nodes from Dirichlet to Neumann in
a prescribed time enables us to model the retarded coalescence phenomenas (coalescence
after minor deformation in regime ”a” and coalescence after substantial deformation of
moderate cases in regime ”c”).

Similar to the work of [21], to determine the rupture time of the gas film, a pre-
simulation must be done. In this simulation, Dirichlet boundary condition for level-set
function in ghost nodes is applied to model the persistence of gas film. The thickness of
the gas film is being monitored throughout the whole simulation. The time in which this
parameter reaches its minimum thickness is counted as rupture time of the gas film. In
the next step, the simulation is being restarted. For times before calculated rupture time,
Dirichlet boundary condition and for times after that, Neumann boundary condition on
level-set function in ghost nodes are being applied. Rupture time for case ”a” is calculated
as explained and is trupture/t

∗ =0.7682, where trupture is rupture time since the moment that
two droplets collide and t∗ = D/Urel is used to non-dimensionalize it. Gas film rupture
time of ∞ means bouncing and 0.0 means immediate coalescence. The characteristics of
the simulations of this study are presented in table 1. The Density and viscosity ratios
for all the simulations are ρd/ρm = 666 and µd/µm = 120, respectively, where m stands
for matrix. A grid size of h=d/30 is used in all the simulations. The collision happens
in X direction. Symmetry boundary condition is applied when possible to reduce the
computational costs.

Figures 3, 4 and 5 present the snapshots of the outcome of the droplets collision for cases
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Table 1: Characteristics of the simulations

Case We Re I Lx/D × Ly/D × Lz/D trupture/t
∗

a 2.25 46.6 0 2.5×1.5× 1.5 0.7682
b 2.27 59.0 0 2.5×1.5× 1.5 ∞
d 61.4 296.5 0.06 5.0×2.8× 1.4 0.0
nn 40. 8.0 0.0 5.0×2.8× 2.8 0.0

Figure 3: Retarded coalescence of droplets with minor deformation. Collision properties as of case ’a’
in table 1. Left: results of current study, with velocity magnitude contours, right: experimental results
of [22].

Figure 4: Bouncing of droplets with collision properties of case ’b’ in table 1. Left: results of current
study, with velocity magnitude contours, right: experimental results of [22].
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Figure 5: Immediate coalescence followed by reflexive separation. Collision properties as of case ’d’ in
table 1. Left: results of current study, with pressure contours on droplet surface, right: experimental
results of [3].

Figure 6: Immediate coalescence of collision of non-Newtonian shear-thinning droplets with n =0.7,
Oh0 = 0.795 and Oh∞ = 0.0.0265. Properties as of case ’nn’ in table 1. Left: results of current study,
right: numerical results of [23].
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a, b and d, respectively. These figures are being compared with the available experimental
results in the literature. The snapshots are made in the same time instances as the
experimental figures. A new lamella stabilization approach is used to numerically stabilize
the thin lamella film in case d. Figure 6 illustrates the results of collision of two shear-
thinning non-Newtonian droplets compared with available numerical results of [23] in the
same time instances. Good agreement is seen in all the cases.

5 CONCLUSION

In this paper, we present a numerical method to simulate collision of GNF droplets. The
bouncing and retarded coalescence of the droplets can be controlled through the proper
boundary condition in the ghost nodes. The gas film rupture time of retarded coalescence
cases can be extracted through analysis of the gas film thickness. A lamella stabilization
approach can be used to stabilize the lamella thin film and prevent it from rupturing
numerically. During the whole simulations, the mass conservation of the droplets was
satisfied. Results agree well with the references.
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A. Amani, N. Balcázar, A. Naseri and A. Oliva

[7] S. Tanguy and A. Berlemont, “Application of a level set method for simulation of
droplet collisions,” International Journal of Multiphase Flow, vol. 31, pp. 1015–1035,
2005.

[8] M. R. Nobari, Y.-J. Jan, and G. Tryggvason, “Head-on Collisions of Drops - A
Numerical Investigation,” Physics of Fluids, vol. 8, no. 1, pp. 29–42, 1996.
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