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Abstract. We propose an Immersed Boundary Method in which the wall boundary
conditions are taken into account through a penalization technique, i.e. through the
addition of a source term to the Navier-Stokes equations. The localization of the solid
bodies inside the domain is done via a level-set method, employing the signed distance
function. We discretize the resulting equations with a Discontinuous Galerkin approach.
With the combination of anisotropic mesh adaptation and unstructured simplicial meshes,
the accuracy of the definition of the solid boundaries, not explicitly discretized, can be
improved without increasing too much the computational cost of the simulation.

1 INTRODUCTION

Immersed Boundary Methods (IBM) are nowadays an attractive alternative to the
classical body-fitted approach, mainly because they greatly simplify the mesh generation
process, especially in the case of moving bodies. For body-fitted grids, the solid wall
boundaries are meshed and boundary conditions are imposed through additional equa-
tions. On the contrary, IBM are characterised by a mesh that covers the entire domain,
not conforming to the geometry of the immersed boundaries.

A modification of the equations in the vicinity of the bodies is then needed to properly
incorporate the boundary conditions. The penalization technique [1, 2, 3] is an IBM in
which the wall boundary conditions are taken into account through the addition of source
terms to the governing equations. The bodies are described using the level-set method,
employing the signed distance function (SDF) as a level-set. As a consequence, a solid
body is located on the mesh by the zero-isovalue of the SDF.
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We propose here to solve the penalized compressible Navier-Stokes equations using a
Discontinuous Galerkin (DG) scheme on adapted grids. DG methods [4] are finite element
methods in which the solution of the variational form of a problem is approximated by
piecewise polynomial functions with no global continuity requirement. Nowadays they
are finding use in very diverse applications because of their robustness, accuracy and
geometrical flexibility. These aspects combined with the compactness of the scheme have
been advantageous for the parallel implementation of the proposed method.

The accuracy of the definition of the solid boundaries, not explicitly discretized, de-
pends on the mesh size used. Since a uniform refinement would be inefficient producing
finer areas where not necessary (i.e. far from the body), a more flexible approach is
to improve the representation of the bodies combining anisotropic mesh adaptation and
unstructured simplicial meshes. Anisotropic mesh adaptation has largely proved useful
in the context of numerical simulations to capture the physical behavior of a complex
phenomenon at a reasonable computational cost [5]. Here we are interested in adapting
the mesh to both the level-set and some relevant physical variable or flow feature, in
order to have a better accuracy with a smaller number of elements. Furthermore, highly-
stretched anisotropic elements introduce regularity in the approximation of the immersed
boundaries and allow to insert fewer elements in the refined areas.

In the following, the method is presented and particular attention is paid to the mesh
adaptation strategy employed. Results on benchmark two- and three-dimensional test
cases are then presented to show the promising features of the method.

2 GOVERNING EQUATIONS

Being an IBM, penalization is characterized by a mesh covering the entire domain. The
solid is considered as a porous media, with a very small intrinsic permeability, based on
an idea introduced by Brinkman [6]. The velocity field is extended inside the solid and
the Navier-Stokes equations are solved with a penalization term to enforce rigid motion
inside the body, leading to the so-called Penalized Navier-Stokes or Brinkman-Navier-
Stokes equations:
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The total energy, the total enthalpy, the pressure, the stress tensor and the heat flux
vector are given by:

E = e+ ukuk/2, (4)

H = h+ ukuk/2, (5)

p = (γ − 1)ρe, (6)

τij = 2µ

[
Sij −

1

3

∂uk
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δij

]
, (7)

qj = − µ

Pr
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∂xj
, (8)

where e is the internal energy, h the enthalpy, γ the ratio of gas specific heats, Pr the
molecular Prandtl number and

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(9)

is the mean strain-rate tensor.
Regarding the parameters of the penalization terms, Ns corresponds to the number of

solids sn considered inside the domain and θsn gives the possibility to penalize the energy
(Dirichlet boundary condition, θsn = 1) or not (Neumann boundary condition, θsn = 0).
The quality of the penalization depends on the choice of the penalization parameter ηp,
that has to be chosen small enough to ensure 1

ηp
� 1. In all the simulations presented

here we employed an implicit scheme with ηp = 10−10. Finally, χsn is the characteristic
function of the solid sn, namely:

χsn = H (−Φsn) , (10)

where H is the Heaviside function and Φsn is the signed distance function to the boundary
of sn. Looking at Eqs. (1–3), the summation terms are responsible for the enforcement
of the boundary conditions at the solid walls and inside the solid. Indeed, outside the
solids the χsn functions are equal to 0, so that the penalization terms vanish and the usual
Navier-Stokes equations are recovered. On the opposite, inside a solid, the characteristic
function is equal to 1 and the coefficient 1

ηp
makes those terms dominate, imposing the

boundary values.

3 DISCONTINUOUS GALERKIN DISCRETIZATION

The governing equations can be written in compact form as

∂u

∂t
+ ∇ · Fc(u) + ∇ · Fv(u,∇u) + p(u) = 0 (11)

where u ∈ Rm denotes the vector of the m conservative variables, p ∈ Rm the penalization
term, d the space dimension, Fc,Fv ∈ Rm ⊗ Rd the inviscid and viscous flux functions.
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A weak formulation of Eq. (11) is obtained multiplying each scalar law by an arbitrary
smooth test function vj ∈ v, 1 ≤ j ≤ m, and integrating by parts:∫

Ω

vj
∂uj
∂t

dx−
∫

Ω

∇vj · Fj(u,∇u) dx

+

∫
∂Ω

vjFj(u,∇u) · n dσ +

∫
Ω

vjpj(u) dx = 0, (12)

where Fj is the sum of the inviscid and viscous flux vectors, Ω the computational domain,
∂Ω the boundary of Ω, n the unit normal vector to the boundary.

Let Ωh be an approximation of the domain Ω ∈ Rd, Th = {K} a mesh of Ωh, i.e.
a collection of “finite elements” K, Fh = {F} the mesh faces, and let Vh denotes a
discontinuous finite element space spanned by polynomial functions continuous only inside
each element K, i.e.

Vh
def
=
[
Pld (Th)

]m
, (13)

where
Pld

def
= {vh ∈ L2(Ωh) : vh|K ∈ Pld,∀K ∈ Th} (14)

is the space of polynomials of degree at most l on the element K. The solution u, the test
function v are replaced with finite element approximations uh and vh, belonging to the
space Vh. The DG formulation of the problem (12) requires to find uh ∈ Vh such that
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vh ∈ Vh, (15)

where r and rF are the global and the local lifting operators and ηF is a stability param-
eter [7]. The numerical flux function f̂ , appearing in the boundary integral of Eq. (15),
uniquely defines the flux at the elements interfaces and prescribes the boundary data on
the discretized boundaries. Indeed, the flux f̂ is the sum of an inviscid, f̂c, and a viscous,
f̂v, contribution. For the former we chose a Lax-Friedrichs scheme while for the latter the
BR2 scheme [8] was employed.

4 MESH ADAPTATION

In general, a mesh adaptation method uses an error estimate to convert the approxi-
mation error into a piece of information to be used by the other stages of the adaptation
procedure. In the case of h-adaptation, this information is used to locally prescribe the
size and the orientation of the mesh elements. Once a numerical solution is obtained on a
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given mesh, the aim is to equidistribute the approximation error over the mesh by locally
adjusting the mesh density, according to an a posteriori correlation.

As proposed in [9], we used a metric tensor field based on the Hessian of the numerical
solution to prescribe sizes and direction of the adapted mesh. These metrics are positive
definite symmetric matrices defined in each node of the mesh. Being diagonalizable, the
eigenvalues λi of these matrices are directly linked to the sizes hi of the elements edges in
the directions i (where λi = 1/h2

i ), with these directions given by the eigenvectors. Fur-
thermore, anisotropic meshes are used to highly stretch elements (triangles or tetrahedra)
in order to limit the number of elements in refined areas.

We chose two different criteria for mesh adaptation, thus producing two different met-
rics defined at each mesh point. A single metric is then obtained intersecting the two,
exploiting the simultaneous reduction method [9].

4.1 Level-set adaptation

As explained in Sec.1, an immersed solid is located on the mesh thanks to the SDF.
In order to define more precisely the boundary and to impose penalization in an accurate
way, a refinement of the mesh in the region close to the solid boundary was exploited. It
has been shown in [10] that to adapt with respect to the zero-isovalue of the level-set the
following metric can be employed:

M = tR

 1
ε2

0 0

0 |λ1|
ε

0

0 0 |λ2|
ε

R (16)

where R = (∇Φ v1 v2), (v1, v2) is a base of the tangential plane of the surface defined by
the isovalues of the SDF, Φ, and λi are the eigenvalues of the Hessian of Φ. The parameter
ε is the allowed error in the approximation of the SDF and this metric is imposed only in
a vicinity w of the surface.

4.2 Physical adaptation

Indeed, mesh adaptation allows to refine the mesh in order to better represent some
physical phenomena of interest. For such a kind of adaptation, the aim is to control the
interpolation error between the exact solution u and its interpolant Πhu on the actual
mesh. An upper bound for this error on a mesh element K is given by [5]:

||u− Φhu||∞,K ≤ cd max
e∈K
〈e,M(K)e〉 . (17)

Here, e denotes the edges of the mesh element, cd is a constant depending on the
dimension and the metric M(K) is computed with the Hessian of u, Hu:

M = tR

λ1 0 0
0 λ2 0
0 0 λ3

R (18)
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where R is the matrix of the eigenvectors of Hu and the λi are defined as:

λi = min

(
max

(
|hi|,

1

h2
max

)
,

1

h2
min

)
. (19)

with hmin (resp. hmax) the minimum (resp. maximum) size allowed for the mesh edges
and hi the eigenvalues of Hu.

5 RESULTS

For each test case, the adaptation criteria and parameters were left unchanged through-
out the procedure. Starting from an initial mesh, once a first numerical solution was
computed, we applied the mesh adaptation procedure described in Sec.4 and the solution
was later re-evaluated. Usually 2-3 iterations were needed for the convergence of the mesh
adaptation algorithm.

All the computations were run in parallel, initializing the P0 solution from the uniform
flow at inflow conditions and the higher-order solutions from the lower-order ones.

5.1 2D: Flow around NACA0012 airfoil

The first test case presented is the laminar viscous flow around a NACA0012 airfoil,
in a subsonic and a transonic configuration. For the subsonic case, the Reynolds number
was set to Re = 5000, the Mach number to M = 0.5 and we set zero angle of attack.
For the transonic case, the Reynolds number was set to Re = 73, the Mach number to
M = 0.8 and the angle of attack to α = 10◦.

We computed both the configurations on the same mesh, that was adapted for the
subsonic case to both the level-set and the pressure distribution. The adaptation param-
eters adopted were kept constant during the adaptation procedure (3 iterations) and are
reported in Tab. 1.

Figure 1: Adapted meshes for the NACA0012 test cases. Upper half : body-fitted ap-
proach, lower half : embedded approach.
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Table 1: Adaptation parameters for the subsonic NACA0012 test case.

Variable ε hmin hmax
0-isovalue 0.001 0.001 2

p 0.001 0.01 2

Figure 2: Mach number distribution for the
subsonic NACA0012 test case, P4 approxi-
mation. Upper half : body-fitted approach,
lower half : embedded approach.

Figure 3: Mach number distribution and
streamlines around the trailing edge for the
subsonic NACA0012 test case, P4 approxi-
mation, embedded approach.

To validate the proposed approach we first computed a solution on a body-fitted mesh
adapted 3 times, and then compared the results with the ones obtained with the IBM. The
6676 elements body-fitted mesh and the 10732 elements embedded mesh are presented in
Fig. 1.

In Fig. 2 the Mach number distributions of both the approaches are compared for a
P4 approximation. In Fig. 3, a close-up around the trailing edge of the profile shows that
the IBM correctly reproduced the steady separation bubble, that is a distinctive feature
of this test case.

The results for the transonic configuration are presented in Fig. 4 and 5, where again
the Mach number distributions for both the approaches are depicted.

5.2 3D: Flow past a sphere

To test our method in 3D we chose a well-known benchmark test case, the viscous
laminar flow past a sphere. Calculations for Reynolds numbers of up to 200 have shown
a steady axisymmetric flow topologically independent from the Reynolds number. The
flow is seen to separate from the surface of the sphere at an angle of separation, θs,
evaluated from the stagnation point and re-attach at a point xs on the axis of the flow,
forming a closed separation bubble. This bubble is characterized by toroidal vortices

7



Marco Lorini, Cécile Dobrzynski, Vincent Perrier and Mario Ricchiuto

Figure 4: Mach number distribution and
streamlines for the transonic NACA0012
test case, P4 approximation, body-fitted
approach.

Figure 5: Mach number distribution and
streamlines for the transonic NACA0012
test case, P4 approximation, embedded ap-
proach.

centred at coordinates (xc, yc), defined as the points in which the velocity is zero in the
sphere’s reference frame. Increasing the Reynolds number up to 200 doesn’t affect the
flow structure, but changes the separation location, the vortex center location and the
separation length.

In our computations, we set the Reynolds number to Re = 150, the Mach number to
M = 0.1 and no angle of attack. As before, we first computed the case on a body-fitted
mesh adapted with same parameters as the embedded one (which are reported in Tab.
2). A cut of the resulting embedded mesh is depicted in Fig. 6, while Fig. 7 shows the
localization of the sphere on the same mesh.

Figure 6: Cut of the 3D mesh for the sphere
test case, showing the refined region after
3 iterations of adaptation.

Figure 7: Localization of the sphere in the
adapted mesh. Yellow : positive values of
the SDF, blue: negative values of the SDF.
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Table 2: Adaptation parameters for the sphere test case.

Variable ε hmin hmax
0-isovalue 0.002 0.04 2.5

M 0.002 0.04 2.5

In Fig. 8 the Mach number distribution for both the approaches are compared and
in Fig. 9 the streamlines for the embedded approach show the steady separation bubble.
Finally, in Tab.3 we compared the geometrical parameters of the bubble with the literature
reference data.

Table 3: Geometry of the steady separation bubble.

θs xs xc yc
IBM P2 127◦ 1.74 0.86 0.34

Ref. data [11] 124◦ 1.7 0.8 0.32

Figure 8: Mach number at a mid-plane slice
of the sphere, P2 approximation. Upper
half : body-fitted, lower half : embedded.

Figure 9: Streamlines along the separation
region at a mid-plane slice of the sphere, P2

approximation, embedded approach.
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6 CONCLUSIONS

The Penalized Navier-Stokes equations have been solved using a Discontinuous Galerkin
method and mesh adaptation has been employed to improve the accuracy of the solid def-
inition. The reason is twofold. First, keep the simplicity of the penalization method in
computing flow solutions around complex geometries, simplifying the mesh generation
process. Secondly, overcome the well-known difficulties of embedded approaches in the
wall treatment.

Mesh adaptations have been performed using two criteria: the distance to the zero-
isovalue of the level-set and a physical variable of the flow solution (p or M in our case).
The proposed 2D and 3D test cases demonstrated the ability of the method to obtain
an accurate solution even when the mesh does not contain a priori any point on the
zero-isovalue of the level-set. For a given accuracy, the number of elements added by the
adaptation procedure to the IBM mesh is clearly larger than the one for its body-fitted
counterpart, but still of the same order.

The next step will be to extend the method to the case of moving bodies as well as for
turbulent flows computations.
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