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Abstract. This paper represents a numerical method to solve fluid-structure interac-
tion (FSI) problems where the fluid exhibits a non-Newtonian Viscoelastic behaviour.
Oldroyd-B constitutive equation is used to model Viscoelastic fluid. For FSI solution,
a semi-implicit partitioned method is used which separates the fluid pressure term and
strongly couples it to the structure, while the remaining fluid terms are only weakly cou-
pled. Numerical tests demonstrate the capability of the method to solve FSI problems
with a non-Newtonian Viscoelastic behaviour of the fluid.

1 INTRODUCTION

Fluid-structure interaction (FSI) problems include a fluid flow mutually interacting
with a moving or deforming structure. Fluid flow exerts surface forces on the solid wet
boundary and the movement of the structure alters the fluid motion. There is a wide
range of applications cited for FSI, from civil to biomedical engineering. Many numerical
methods have been developed to accurately simulate FSI problems. However, most of
the previous works have studied the interaction of a Newtonian fluid with an elastic
structure. Although Newtonian fluids account for many important problems, there are
many practical situations where the working fluid cannot be modeled as Newtonian. Thus
the mathematical model for simulation of the FSI problem must account for the non-
Newtonian behavior of the fluid as well. Despite many numerical methods have been
proposed for non-Newtonian fluids, few works in the literature have studied the problem
of a non-Newtonian fluid interacting with a deforming structure.

Partitioned methods are a favorable class of numerical techniques to solve FSI prob-
lems (see [1] for a review). A separate solver is used for each sub-problem domain and
the equilibrium between the domains is enforced as coupling condition on the interface.
Partitioned methods could be weakly-coupled (explicit) or strongly-coupled (implicit) de-
pending on how the equilibrium condition is enforced. Weakly-coupled methods do not
observe the equilibrium condition exactly which might cause numerical instability in FSI
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problems with low solid/fluid density ratios (so-called added-mass effect) [2, 3]. Strongly-
coupled methods enforce the equilibrium condition via coupling iterations between the
fluid and structural solvers. These methods are stable for FSI problems with strong
added-mass effect, although they are computationally expensive due to the coupling iter-
ations. A third technique, called semi-implicit method, segregates the fluid pressure term
and strongly couples it to the structure. Strong coupling of the fluid pressure guaran-
tees the stability of the method while weak coupling of the remaining terms reduces the
computational effort [4, 5].

Viscoelastic behaviour of fluid is prevalent in a wide range of applications including
food processing, pharmaceuticals, casting industry and chemical industry [6]. One of the
important applications of Viscoelastic fluids is in microfluidic devices, for instance memory
and control devices [7] and microfluidic rectifiers [8], use Viscoelastic materials as working
fluid. A huge portion of biological fluids in nature exhibit viscoelastic behavior. Thus it
is important to understand the dynamics of Viscoelastic fluids. Numerical simulation has
become a powerful method in studying the underlying physics of viscoelastic behaviour of
the fluid and also an important tool in design and manufacturing process of Viscoelastic
applications. In numerical simulations, the Viscoelastic flow is solved using Navier-Stokes
equations integrated with an extra constitutive equations which describes the relation
of stress with strain rate tensor [9]. A variety of numerical methods, including finite
difference, finite element, finite volume and hybrid methods, have been developed to
simulate viscoelastic flows [10, 11, 12, 13]. In spite of significant progress in the field
of single phase viscoelastic fluid flow, the key questions in the field of non-Newtonian
Viscoelastic Fluid-Structure Interaction (nVFSI) has not been answered. In this paper
we propose a numerical method to study the non-Newtonian Viscoelastic fluid interacting
with an elastic structure. Oldroyd-B constitutive equation is used to model the viscoelastic
fluid.

The rest of the paper is organized follows: Governing equations are presented in section
2. Numerical methods are presented in section 3. The results are discussed in section 4
and finally the conclusion remarks are presented in section 5.

2 GOVERNING EQUATIONS

In this section, the governing equations for each sub-problem domain and the coupling
conditions on the interface are presented. The fluid and structural domains are referred
to as Ωf (t) and Ωs(t) respectively, as they both vary in time. The interface of the domains
is the shared boundary denoted by Γ(t) = ∂Ωf (t) ∩ ∂Ωs(t).

2.1 Fluid equations

The unsteady flow of an incompressible fluid is governed by the Navier-Stokes equa-
tions. An Arbitrary Lagrangian-Eulerian (ALE) formulation of these equations in a mov-
ing domain is given by:

∂u

∂t
+ c · ∇u =

1

ρf
∇ · σf (1)
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∇ · u = 0 (2)

where u is the fluid velocity and ρf the fluid density. Vector c is the ALE convective
velocity c = u−w, which is the fluid velocity relative to a domain moving with a velocity
w. The stress tensor σf is defined as:

σf = −pI + 2µsγ + µpτ (3)

where p is the fluid pressure, I the unit tensor, µs the dynamic viscosity of the solvent
fluid, µp is the dynamic viscosity of the polymer fluid and γ the strain rate tensor given
by:

γ =
1

2
(∇u +∇uT ) (4)

In euqation 3, τ is the extra stress tensor related to non-Newtonian viscoelastic behaviour
of the fluid. The Oldroyd-B constitutive equation is used to model this extra stress tensor
as follow:

τ + λ1
∇
τ = 2µ0(γ + λ2

∇
γ) (5)

where µ0 is the total viscosity of the fluid (µ0 = µs + µp), λ1 is the relaxation time

and λ2 is the retardation time (λ2 = µs/µ0λ1). In this formulation
∇
τ and

∇
γ are the upper

convected time derivative of stress and strain rate tensors, respectively. This operator for
an arbitrary tensor of A defines as:

∇
A =

∂A

∂t
+ u.∇A−∇uT .A−A.∇u (6)

2.2 Structural equations

The structural domain is governed by the nonlinear elastodynamics equation:

ρs
D2d

Dt2
= ∇ · σs (7)

where d stands for the structural position with respect to the reference configuration,
and the structural density is shown by ρs. The Cauchy stress tensor σs is related to the
second Piola-Kirchhoff tensor Ss by:

Ss = JF−1σsF
T (8)

where F is the deformation gradient F = ∇d and J is its determinant (J = det(F)).
The FSI method is presented for a general structure, however, for the test case in this

paper the structure is considered to be an Euler-Bernoulli beam, governed by the following
equation:

ρsA
∂2d

∂t2
+ EI

∂4d

∂x4
= q(x, t) (9)
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where d = [0, y, 0]T in a Cartesian coordinate (x, y, z), A is the cross section area of the
beam, I the second moment of area, and q is the normal load per unit length.

2.3 Coupling conditions

The coupling conditions apply at the interface Γ and account for the interaction of
the domains. They are derived from the kinematic and dynamic equilibrium between the
domains, which yield to the following conditions on a non-slip type interface:

uΓ =
∂dΓ

∂t
(10)

σs · nΓ = σf · nΓ (11)

for any point x ∈ Γ, where nΓ is the unit normal vector on the interface. Equation (10)
represents equality of the velocity of the fluid and the structure on the interface to as-
sure the kinematic equilibrium. Equation (11) represents equality of the traction on the
interface for dynamic equilibrium.

3 NUMERICAL METHOD

In this section we represent the numerical methods and discretization schemes to solve
the coupled non-linear system of governing equations.

3.1 Fluid solver

A fractional-step (projection) method [14] is used to solve the velocity/pressure cou-
pling of the momentum equation. Thus, an intermediate velocity field is evaluated without
considering the pressure gradient term. We use an explicit Adams-Bashforth method for
discretization of the convective and diffusive terms. Therefore the intermediate velocity
field is evaluated as:

u∗ − un

∆t
=

3

2
[−(c ·∇u)n +

µs

ρf
∇2un +µp∇.τ n]− 1

2
[−(c ·∇u)n−1 +

µs

ρf
∇2un−1 +µp∇.τ n−1]

(12)
for any x ∈ Ωn+1

f . This velocity field is then projected onto a space of divergence-free
vector fields:

u∗ = un+1 +
∆t

ρf
∇pn+1 (13)

∇ · un+1 = 0 (14)

where pn+1 is the pressure field obtained by:

∇2pn+1 =
ρf
∆t
∇ · u∗ (15)
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The boundary condition for velocity on the interface comes from the coupling condition:

un+1
Γ =

dn+1
Γ − dn

Γ

∆t
(16)

for any x ∈ Γn+1. We apply this boundary condition on the predicted velocity as well:

u∗Γ =
dn+1

Γ − dn
Γ

∆t
(17)

In this work, the fractional-step method is used not only for solving the fluid equations,
but also as a framework for the overall FSI solution algorithm, making it fundamental to
the overall method.

3.2 Dynamic mesh

As the solid boundary is deformable, fluid mesh needs to move to adapt to the new
location of the interface and the discrete domain velocity on the mesh surfaces wn+1 needs
to be evaluated. A parallel moving mesh technique, based on radial basis function inter-
polation method [15], is used to move the fluid grid in accordance to the new location of
the interface. Surface velocities are evaluated according to the so-called space conserva-
tion law which guarantees no volume is lost while moving the grid. Detailed description
of the dynamic mesh method could be found in [15, 5]. Here we will use the function M
to refer to the mesh movement step:

(Ωn+1
f ,wn+1) =M(dn+1

Γ ) (18)

3.3 Structural solver

Structural equations are discretized in time using a second-order Newmark method.
Defining the structural velocity v = ∂d

∂t
, the semi-discretized structural equation reads:

vn+1 = vn +
∆t

2ρsA
[(qn+1 − EI ∂

4d

∂x4
)n+1 + (qn − EI ∂

4d

∂x4
)n] (19)

and the new location of the structure could be calculated as:

dn+1 = dn +
∆t

2
(vn+1 + vn) (20)

It should be noted that using a simplified structural model is not restrictive for the
proposed FSI coupling method, since it is used as a black-box module. We will use the
notation S to refer to the structural solver as a function of surface stress on the interface:

dΓ = S(σΓ) (21)

where dΓ is the location of the interface and σΓ is the stress on the interface exerted by
the fluid σΓ = σf (p,u)Γ · nΓ.
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Figure 1: Schematic view of the driven cavity test case with flexible bottom wall. Point P is the midpoint
of bottom wall.

3.4 Coupling method

A semi-implicit FSI coupling method is used in which only the fluid pressure term is
strongly coupled to the structure via coupling iterations. The remaining fluid terms as
well as the dynamic mesh step are evaluated only once per time step [16, 5].

The FSI solution method at a new time step is as follows.

step 1- Explicit step:

• Predict the location of the interface by extrapolation from previous time steps.

• Define the new discretized domain using equation 18.

• Evaluate the predicted velocity field by equation 12.

step 2- Implicit step:

• Evaluate the fluid pressure (equation 15)

• Solve the structural equations to evaluate the deformation (equation 21).

• Update the boundary condition on predicted velocity (equation 17).

• Repeat until convergence is achieved.

step 3- Explicit step:

• Correct the velocity field (equation 13)

• Apply the boundary condition for velocity (equation 16).
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Figure 2: Oscillation in the position of the point P for three different cases of Newtonian fluid, and
Viscoelastic fluids with λ1 = 0.10 and λ1 = 0.15

Step 2 of the above algorithm is where fluid pressure is strongly coupled to the structure.
This step provides for the stability of the method for FSI problems with strong added-
mass effect. The FSI coupling method is extensively tested and validated in the previous
works of the authors [16, 5, 17, 18].

4 NUMERICAL TESTS

Numerical tests are carried out on a benchmark problem studied in [3, 19], among
others. The test case is a 2-D lid-driven cavity of a 1m × 1m with a flexible bottom.
The top boundary of the cavity is moving with an oscillatory speed of u(t) = 1− cos(ωt)
with ω = 2π/5. There are two openings of 0.1m length on the sidewalls that allow the
fluid to enter to and exit from the domain. Figure 1 shows a schematic description of the
problem.

The fluid density in all the cases is ρf = 1.0kg/m3. For Newtonian fluid, viscosity is
µs = 0.01 Pa.s and for viscoelastic fluids, µs = µp = 0.005 Pa.s. Two different viscoelastic
cases with λ1 values of 0.1 and 0.15 are tested and results are compared with the results
of Newtonian fluid. The flexible structure at the bottom has a thickness of h = 0.05m,
the structural density is ρs = 20kg/m3 and the Young modulus E = 250N/m2.

The flexible bottom is modeled as an Euler-Bernoulli beam, as mentioned earlier. A
51×51 spatial grid is used to solve the problem. Spatial discretization is carried out using a
finite volume method with second-order central difference schemes. The structure is a thin
membrane so the fluid mesh elements on the interface are also used as the computational
grid for the structural equations. Thus, the structural grid nodes match the fluid mesh on
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Figure 3: Velocity Magnitude field inside of the deformed domain at time t = 40s. (a): Viscoelastic
fluid with λ1 = 0.1, (b): viscoelastic fluid with λ1 = 0.15 and (c): Newtonian fluid.

the interface and there is no need for interpolation of parameters between the domains.
Simulations are carried out from t = 0 until t = 40s. Figure 2 presents the oscillation in
the position of the point P for three different cases of Newtonian fluid, and Viscoelastic
fluids with λ1 = 0.10 and λ1 = 0.15.

It is plain to see that by varying from Newtonian fluid to Viscoelastic fluid with λ1 =
0.10, the magnitude of the structural deformation has decreased noticeably. Moreover,
by increasing the relaxation time of the Viscoelastic fluid from 0.10 to 0.15, the nature of
the movement of the point P changes from smooth oscillation to a rough shape. Figure
3 shows the flow field inside the domain with structural deformation at the bottom for
the aforementioned cases, at t = 40s. It can be seen in this figure that the oscillation
magnitude of Newtonian fluid is bigger than the others as well as the velocity magnitude
at the outlet.
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5 CONCLUSIONS

A Numerical method for simulations of non-Newtonian Viscoelastic fluid-structure in-
teraction (nVFSI) is presented. Oldroyd-B model is used as the constitutive equation for
Viscoelastic fluid and a semi-implicit partitioned method is used for FSI coupling. Three
different cases of Newtonian fluid and Viscoelastics with λ1 = 0.10 and λ1 = 0.15 are
tested. The results show that by including the Viscoelastic behaviour to the system, the
magnitude of the deformation of the structure decreases. Also by increasing the relaxation
time from 0.10 to 0.15, the nature of the deformation of the bottom wall changes from
smooth to non-smooth oscillation.
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