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Abstract

This paper presents an enhancement of the Superconvergent Patch Recovery technique
with constrains (SPR-C) for the evaluation of a recovered stress field around the con-
tact area of mechanical components considering the case of frictionless contact within the
Cartesian grid framework (cgFEM) where the Finite Element mesh does not fit the ge-
ometry. The idea behind the proposed technique is that of simultaneously evaluating two
stress fields (one for each of the patches of the contacting bodies), enforcing the contact
equilibrium equations by imposing the continuity of the normal stress field along the con-
tact surface, together with the satisfaction of the internal equilibrium and compatibility
equations.

1 Introduction

In recent years the development of immersed boundary Finite Element (FE) methods
has become a relevant research field within the computational mechanics community.
Some proposed methods include the Finite Cell Method (FCM) [10], CutFEM [4] and
the Cartesian grid Finite Element method (cgFEM), first in 2D [7] and lately in 3D [6].
While having its particular features, all these methods share the idea of decoupling the
discretization mesh and the definition of the boundary. This allows the fast generation
of analysis meshes, which usually represents the bottleneck along the mechanical analysis
process.

The immersed boundary methods are also interesting for solving interface problems such as
fracture and contact mechanics, since the boundary of the domain is not explicitly involved
in the mesh creation. However, the lack of nodes over the boundary prevents the strong
enforcement of boundary conditions, therefore, special strategies for the weak imposition
of boundary constrains in embedded domains are needed. This problem becomes more



2

challenging when applying non-linear constrains, such as in contact mechanics. Stabilized
Lagrange multipliers formulations have been developed to solve frictionless [5] and small
sliding [1, 2] contact problems within the embedded domain framework.

In [8] a stabilized formulation for large deformation frictional contact was adapted to
the cgFEM. An important feature of this formulation is the choice of the stabilization
term, using the Zienckiewicz and Zhu [12] smooth stress field σ

∗. The Superconvergent
Patch Recovery technique consists in a minimization problem for each node in the mesh,
where the FE stress is fitted to a polynomial. Other relevant use of this recovered field
is as error estimator [11] to guide the adaptive mesh refinement. It seems intuitive that
the enhancement σ∗ will increase the robustness of the contact stabilized formulation as
well as the quality of the error estimators. In [9], we presented a Lagrange multipliers-
based procedure, to obtain polynomials, used to describe the locally recovered stress field,
that satisfy the equilibrium and compatibility equations. In this work, we have extended
this procedure in order to improve the stress field around the contact area by including
frictionless contact boundary conditions in the minimization problem.

2 Superconvergent Patch Recovery with constrains

The Superconvergent Patch Recovery [12] is a post-processing technique for obtaining
a smooth field of the solution gradients. The first step is defining a patch Ωp at each
node of the mesh, which is formed by all the elements surrounding the node. Then, each
component i of the smooth stress field for a given patch is defined as σ∗

i (x) = p(x) ai,
where p(x) = {1, x, y, z, ...} is the polynomial expansion of a given degree (usually the
same as the used at the FE interpolation), and ai are the polynomial coefficients associated
to each component, which are obtained solving the following minimization problem:

min

[

1

2

∫

Ωp

(

p(x) ai − σh
i

)2
dΩ

]

(1)

Finally, the values of σ∗ are obtained for any point in the domain either by interpolating
the nodal values obtained at each patch or using the conjoint polynomials technique
proposed by [3]. In the modified version SPR-C [9], all components σ∗

i must be solved
simultaneously in order to apply additional constrain equations. For example, we can
enforce the fulfilment of the internal equilibrium at each patch, and the minimization
problem given in (1) becomes:

min

[

1

2

∫

Ωp

(

P(x) A− σ
h
)2

dΩ

]

subject to ∇ · (P(x) A) + b(x) = 0

(2)

where A = {a1, ..., a6}, P(x) = diag (p(x), ...,p(x)) is a block diagonal matrix containing
the polynomial expansion p(x) for each component of the stress and b(x) are the body
forces. The problem in (2) can be solved using Lagrange multipliers, and a linear system
of equations is obtained for each patch, which can be expressed in matrix form as:

[

M CT

C 0

]{

A
λ

}

=

{

H
Λ

}

(3)
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with the following definitions:

M =

∫

Ωp

P(x)T P(x)dΩ ; H =

∫

Ωp

P(x)T σ
hdΩ

C = LT P(x)A+ b(x) = 0 ; LT =





Dx 0 0 Dy 0 Dz

0 Dy 0 Dx Dz 0
0 0 Dz 0 Dy Dx





Di =
∂

∂i

(4)

The same procedure can be done to apply the tractions equilibrium at loaded or free
boundaries at patches containing boundary elements. In that case, new rows would be
added to matrix C with the boundary equilibrium equation:

Cext : R(x)P(x) A = t(x) (5)

where R(x) is a transformation matrix from the tensor stress components to the traction
vector and t(x) are the applied tractions on the boundary (t(x) = 0 for free surfaces).

3 Frictionless contact constrain

Let us consider two isolated bodies Ω(1) and Ω(2). Taking into account the restrictions or
loads applied on the body surfaces, we can distinguish three non-overlapping regions along
its boundary. This way, each solid domain will be delimited by the union of the Dirichlet
boundary Γ

(i)
D , the Neumann boundary Γ

(i)
N and the contact boundary Γ

(i)
C , where i = 1, 2

(we will use this notation from this point on). This last region comprises all points on the
surface of one solid that may come into contact with points belonging to the other solid
in equilibrium configuration.
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Figure 1: Sketch of the domains that define two elastic solids in contact problems

When the solids move due to the loads and the equilibrium is achieved, the deformed
boundary domains differ from those in the original configuration. Particularly, Γ

(i)
C changes

its definition and Γ
(i)d
C will comprise all points that are actually in contact in the deformed

configuration.
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The stress distribution corresponding to the exact solution must fulfil the equilibrium
equation over the contact boundary Γ

(i)d
C . Nevertheless, the equation (5) presented in

the previous section can’t be used since an explicit traction vector t(x) is not available.
Instead, we must consider the stress field that appears in each solid in contact. We will
consider equation (5) evaluated over Ω(1) and Ω(2) surfaces:

Ccont,i : R(i)(x)P(i)(x) A(i) = t(i)(x) (6)

Now, if we focus on the contact deformed boundary Γ
(i)d
C , the equilibrium condition will

only be satisfied if it is true that:

t(1)(x) + t(2)(x) = 0 (7)

and taking into account equation (6) this expression can be re-written as:

Ccont : R(1)(x)P(1)(x) A(1) +R(2)(x)P(2)(x) A(2) = 0 (8)

Furthermore, we can consider additional information derived from the frictionless contact
condition. In the scope of this model, the relative displacements between contact surfaces
are not constrained and so in-surface shear stresses must be equal to zero. This means
that the traction vector must fulfil the following equation:

t(i)(x)
(

I− n(i)(x) n(i)(x)T
)

= 0 (9)

where n(i)(x) is the outgoing normal vector to the surface Γ
(i)d
C and I is the identity matrix.

Let us define a local Cartesian coordinate system {i, j,k}(i) with its origin on Γ
(i)d
C and i

pointing in the same direction as n(i)(x). Considering this new reference system, we will
reformulate equation (6) as:

Ccont,(i) : T(i)(x)R(i)(x)P(i)(x) A(i) = T(i)(x)t(i)(x) (10)

where T(i)(x) is the transformation matrix from global to local coordinate system.

Combining this equation with (9) we obtain:

Ccont,(i) : T(i)(x)R(i)(x)P(i)(x) A(i) =
{

n(i)(x)T t(i)(x) 0 0
}T

(11)

from where we get two constraints for each solid which impose the frictionless condition.

Finally, considering (8) and (11), we come to the following linear system of equations:

Ccont,(1) : T∗(1)(x)R(1)(x)P(1)(x) A(1) = 0

Ccont,(2) : T∗(2)(x)R(2)(x)P(2)(x) A(2) = 0

Ccont : n(1)(x)TR(1)(x)P(1)(x) A(1) + n(2)(x)TR(2)(x)P(2)(x) A(2) = 0

(12)

where T∗(i) are rows 2 and 3 of matrix T(i). In order to apply this constraint, it is
necessary to have two different stress distributions available, each of them associated to
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one of the bodies in contact. Therefore, before implementing these equations within the
SPR-C technique, we need to establish a subdomain from Ω(2) associated to each patch
of Ω(1) where an auxiliary stress field will be recovered and vice versa.

Let us consider the contour patch defined by the assembly node i, which is part of the
mesh associated to Ω(1). The intersection between the boundary of the patch and Γ

(1)
C

is represented by Γ
(1)p
C . On the other hand, the region of Γ

(2)
C that overlaps Γ

(1)p
C in the

deformed configuration will be defined as a new subdomain Γ
(2)p
C . If we extrude Γ

(2)p
C into

Ω(2), we will get a volume Ω
(2)
aux over which we can apply stress recovery techniques. This

region must be representative since the accuracy of the stress state evaluated on Ω
(2)
aux will

depend on its definition.

Figure 2: Scheme of the constrained SPR assembly for node i at Ω(1). An auxiliary patch at a region
of Ω(2) is created to enforce contact pressure continuity.

Once we have established the constrain equations and how to obtain the auxiliary domain,
we present the system of equations that will be solve for each patch. The formulation
is an expansion of (3), where the structure the stress distributions associated with each
body are solved at the same time, with Ccont enforcing the continuity of the stress field
over Γ

(1)p
C :












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


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




















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
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











(13)

An analogous procedure is followed for the construction of the recovered field over patches
defined at Ω(2).

4 Numerical examples

A comparison between the recovered field calculation with and without contact constrains
is performed in the following contact problem between two elastic solids. The 2D sketch of
the problem is shown in Figure 3 left. In the initial configuration both contact surfaces are
overlapping (there is no space between solids), and vertical displacement d = −1.6 ·10−6m

is applied on the upper face of body 2. Symmetry conditions are applied to the faces
parallel to the yz plane, and displacements along y direction are constrained to avoid rigid
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Figure 3: Contact between elastic solids. Sketch of the problem and analysis meshes.

body motions. Two lateral faces of body 1 are loaded with py = 4 · 1011(0.01 − z)z Pa

and pz = 10 · 1011(0.01 − z)z Pa. Material properties for both solids are E = 115GPa

and ν = 0.3.

Two different analyses were solved using non-conforming uniform meshes (Figure 3), with-
out any additional constrain (SPR) and using the constrained version of the SPR adding
contact constrains (SPR-C). Figure 4 shows the contact pressure pN = n ·σ∗ ·n evaluated
at a path along x direction. A 2D overkilled mesh was used as a reference. The improve-
ment of the recovered field can be appreciated in two ways. In one hand, the values of the
contact pressure along the contact area are much closer to the reference values for both
meshes, and in the other hand, the enforcement of boundary equilibrium also ensures null
normal tractions over non-contact regions. The L2-norm error of the stress tensor σ∗ at
the contact surface is shown in Figure 5 for the first analysis mesh. The enforcement
of the contact constrains in the SPR clearly improves the quality of the recovered field.
There is only a slight improvement around the end of contact area. As the recovered field
is based on a polynomial fitting and the nodes are not located over the boundary, the
capture of that point, which is non-derivable, still remains a challenge.

5 Conclusions

We have presented an extended version of the Superconvergent Patch Recovery with con-
strains (SPR-C) that enforces the normal tractions continuity for 3D frictionless contact
problems. With this additional constrain the recovered stress field has an improved qual-
ity over the contact region. This will allow better error estimation for mesh adaptivity
procedures and enhanced robustness of the contact solution algorithm. Finally, a further
development regarding 3D large deformation frictional contact is currently in progress.
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Figure 4: Example 1. Frictionless contact. Left: Normal stress on the contact area (positive values
of the stress stand for compression). Right: Evolution of values of the normal stress, along a path that
follows the y direction, with mesh refinement.

Figure 5: Error in L2-norm of the recovered field σ
∗ evaluated at the contact surface using SPR (left)

and constrained SPR-C (right). The results correspond to the first analysis mesh.
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