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Abstract. The A-CD2 method gives a mechanical description for instantaneous collisions
between rigid bodies. This method considers a solid that moves with constant velocity in
the intervals [t1, tc[ and ]tc, t2]. The contact points at tc are computed with the current
position and the new velocities, due to the collision at tc, are calculated by means of a
constrained optimization problem. Several applications have used this method. When
the solid is governed by a torque free motion, the velocities are not necessarily constants,
because depend on the moments of inertia. This behavior is not included in the A-
CD2 method, since constant velocities are considered. An extension includes the use of
the Euler equations for modeling the angular velocities, when the body is torque free.
Therefore, non constant angular velocities are obtained when the moments of inertia are
different.

An important result is the reduction in the computational complexity of the original
algorithm, from O(N2) to O(N), mainly due to the contact detection stage. This reduc-
tion allows to handle problem 20 times larger than the original. Numerical simulations
for granular layers motion are presented.

1 INTRODUCTION

Collision between rigid bodies is an important class of processes arising in several
natural events, for instances, avalanches, molecules and asteroids collisions, and also in
many important engineering and industrial problems e.g., mining, construction, transport,
among others.

Thus, it is important to develop computational models for collision simulations in order
to complement expensive experiments, which usually requires resources and equipments
that are expensive. A computational simulation allows to considerably reduce the use of
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special equipments and other resources, and still allowing to obtain a very close description
of the dynamics of the phenomenon, with the goal of analyzing and studying the evolution
of collisions in time.

The approach presented in [1], named A-CD2 obtains the new velocities of a set of
solids, after a collision, by solving a constrained minimization problem. Currently this
method allows us to simulate a system with no more than 1500 solids. The problem
is mainly computational: the contact detection algorithm has computatinal complexity
O(n2), where n is the number of solids in the system. Therefore, an efficient computa-
tional method is presented, where an algorithm with linear computational complexity is
achieved, and an interior point method for the constrained optimization problem is used.
Now, simulations with more than 5000 solids is achieved, and the computational time has
been decreased considerably. Numerical simulations for the constitution of compact grain
layers is obtained, where the solids is concentrated in a point with the objective to have
a layer of rigid bodies in equilibrium.

2 METHODS

2.1 A-CD2 METHOD

A theory for multiple collisions in granular flow, based on the representation of the
medium as a collection of rigid bodies [4] is presented in [1, 2, 10]. When rigid bodies
get into collision, it is no longer possible to solve the classical equation of motion be-
cause velocities are not differentiable: the application of the principle of virtual work in
association with appropriate constitutive laws relating internal stress and velocities al-
lows to obtain a set of equations of motion, valid both for smooth and for non-smooth
evolutions. In particular, this approach allows us to overcome the limits of the classical
penalty method, it does not require the definition of gap functions, and satisfy the actual
physical condition of non-interpenetration of the particles. Moreover, compared to [5] or
[6] the existence and the uniqueness of the solution of the Clausius-Duhem inequality has
been proved [10]. This approach is called Atomized efforts Contact Dynamics respecting
the Clausius-Duhem inequality (A-CD2). It describes multiple bodies contact dynamics
(according to the Clausius-Duhem inequality) by means of an “atomization” of the efforts
exerted during contact.

According to obtain the velocities after the collision, this approach, for the sake of
simplicity, it exposed for a single point, with mass m, colliding once to a rigid fixed
surface in a time interval [t1, t2] and having instantaneous velocity discontinuity, before
generalizing the formulation to a simulataneous collision of N rigid solids [4, 10].
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Figure 1: Point - plane system: a particle with mass m and a fixed plane.

As the collision is assumed to be instantaneous, the velocity u of the point is discon-
tinous at the instant tc of the impact, having a left and right limit noted u− and u+.
The contact force is concentrated in time, becoming a percussion P int [4]. In Figure 1
we show the interaction between the point and the rigid fixed plane with one collision in
the time interval, the description of the point trajectory x(t) in [t1, t2] and the collision
at time tc.

Interior forces considered in the particle motion at interval time [t1, t2] are defined by
their work. Let us consider a contact force f int, which is concentrated in time, such as
the internal percussion P int. An exterior percussion P ext could be taken into account,
not depending on u, and also applied to the point at the instant of collision. External
forces f ext also are considered and are not depending on the velocities. The equations of
motion assume the following form on [t1, t2] [8]

m
du

dt
= −f int + f ext almost everywhere (1)

and
m
(
u+(tc)− u−(tc)

)
= −P int + P ext everywhere (2)

N

x(t1)
x(t2)

x(tc)
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u+

Figure 2: Motion of a rigid body.
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If we consider now a solid, not a point (see Figure 2), we have [8]

m
(
u+ − u−

)
= −P int + P ext (3)

I
(
ω+ − ω−

)
= −g A× P int + g B × P ext

where ω is the rotational velocity of the solid, g is the center of mass, A is the point
where the internal percussion is applied and B is the point where the external percussion
is applied.

The following minimization problem:

inf
x
F (x) = 〈x,x〉+ Φ(x)−

〈
2u− + b,x

〉
(4)

where the function Φ(x) = Φd(x) + 1K(x) and K =
[
u−·N

2
,∞
[

Φ = Φd + 1K is a

pseudopotential of dissipation, which is convex, positive and null in the origin [7, 8, 10, 12]
and

P int ∈ ∂Φ

(
u− + u+

2

)
where Φ = Φd + 1K (5)

i.e. the internal percussion is derived from a pseudopotential of dissipation, divided in a
dissipative Φd and reactive 1K percussion. Particularly, the reactive percussion can be
replaced by the constraints ϕk(x) ≤ 0 defining the set Ω.

The collision problem is now a constrained minimization problem, where the solution
gives us the new velocities of solids at some discrete time ∆t. The function F (x) is
quadratic due to the choice of the dissipative percussion Φd (quadratic) and the set of
constraints ϕk(x) ≤ 0, k = 1, nc (non - interpenetration condition) where nc is the total
number of contact points.

Thus, the constrained minimization problem is given by:

inf
x∈Ω

F (x) = 〈x,x〉+ Φd(x)−
〈
2u− + b,x

〉
where Ω =

{
x ∈ R6N : ϕk(x) ≤ 0, k = 1, ..., nc

}
(6)

The constraint ϕk(x) associated to the contact point Aijk is given by

ϕk(x) =
(
d
u/2−

ij (Aijk)− dx
ij (Aijk)

)
·N k (7)

where N k is the normal vector at contact point Aijk, and

du
ij (Aijk) = (ui + ωi × giAijk)−

(
uj + ωj × gjAijk

)
(8)

is the actual relative velocity of solids i and j at the contact point Aijk You can see more
details in [1, 10, 11].

The function F (x) is possible to write it in the following quadratic matrix form

F (x) =
1

2
xT (2M + Ξ) x− xT

(
2M u− − bext

)
(9)

where M ∈ R6N×6N is the inertia and mass matrix, Ξ ∈ R6N×6N is the pseudopotential of
dissipation matrix and bext is the external percussion vector. It is possible to show that
the matrices M and Ξ are sparse [11].
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2.2 CONTACT DETECTION

An important step of our work, is the contact detection step, which determines the
points where the solids are in contact. This step is divided in two process: (a) determina-
tion of closer solids and (b) computation of contact points. The first part is addressed by
a neighborhhod technique. This technique consists in computing, each certain amount of
timesteps, the neighborhood for each solid, that means, all solids which are closer. The
second part is addressed by a technique called “early out”, which consists in to procede
with less expensive tests first before to entry in the more specific overlap tests.

2.2.1 Neighborhood

The neighborhood for each solid is computed using a cell mapping technique [13],
applied to a three dimensional space. This technique consists in dividing the space in
boxes or cubes, and calculating the cube where each solid belongs, for instance, if a solid
i is in the position (xi, yi, zi), then belongs to the cube with coordinate:(

xi −minx

sizex
,
yi −miny

sizey
,
zi −minz

sizez

)
,

where minx,miny and minz are the minimum coordinates x, y and z respectively, and sizex,
sizey and sizez are the each size of the cube. Each cube has three coordinates, which is
the position in the space, consequently has a corresponding cube. The neighborhood
of the solid will be then, all the solids which are in the closer cubes, i.e. for the cube
CUBE(a, b, c) with coordinate (a, b, c), the neighborhood will be formed by the 26 cubes
around. In the original simulations, the neighborhood computation of one solid considers
the distances with all the remaining solids. Therefore, the computation is order O(N2).
The call mapping technique is order O(N), because we are going to compute the distances
just with the solids which belong to the 26 cubes around.

2.2.2 Contact Points

In [9] is mentioned a Bounding Volume (BV) which is a volume encapsulating one or
more objects of more complex nature. The idea is, for the simple shapes, such as boxes
or spheres, to have cheaper overlap tests than the complex objects they bound. Using
bounding volumes fast overlap rejection test is allowed, because it is only necessary a test
against the complex bounded geometry when the initial overlap query for the bounding
volumes gives a positive result. In [9] also mentioned that not all geometric objects
serve as effective bounding volumes; desirable properties for bounding volumes include
inexpensive intersection tests, tight fitting, inexpensive to compute, easy to rotate and
transform and use little memory.

The main idea is to apply a technique called “early out”, which consists in to procede
with less expensive tests first before to entry in the more specific overlap tests. Therefore,
the idea of the bounding volumes is that they must have a simple geometry shape, allowing
a first fast overlapping test.
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The contact detection between solids has been separated in two steps: a faster overlap
detection and a contact point detection. The first step is made using spheres as BV,
therefore the overlap detection is focused in detect if a polyhedron is close enough to
another one. The second part is performed when both bounding spheres are overlapped,
then, is applied a technique to search the points where the polyhedrons are in contact.
Three contact point detections are made: surface, face and edge detection.

3 NUMERICAL RESULTS

A granular material is a collection of solid particles or grains, such that most of the
particles are in contact with at least some of their neighboring particles. The term granular
layer could be used to describe a type of granular material, in fact, a granular layer is
simply a collection of solid particles which is in repose in some surface. In this case it
will be considered a granular layer in a plane. The problem arises in building this layer,
because the idea is to obtain a very compact granular heap.

An interesting result is that the computational time for N solids, have a linear behav-
ior. It is important to remark that the optimization part was a black case, which it is not
possible to change, but all the rest of the computations: contact detection, optimization
problem building, velocity updating and geometry setting were computed. In the simula-
tion for N solids, they begin at rest in a random position but directed towards the origin,
therefore after some simulation time, solids start to collide forming a heap.
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(a) 0.0 [s] (b) 0.2 [s]

(c) 0.5 [s] (d) 0.8 [s]

Figure 3: Evolution of 1000 solids forming a heap.
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(a) 0.0 [s] (b) 0.2 [s]

(c) 0.5 [s] (d) 0.8 [s]

Figure 4: Evolution of 3000 solids forming a heap.

4 CONCLUSIONS

The main goal of this work was to develop a mathematical and computational model
for multiple collision of rigid bodies, by means of an extension of the A-CD2 method. The
new elements addressed in this work was the computational issues detected in the original
version and the theoretical development for the rotational velocities of the solids. Theses
issues comprise (a) inefficient use of computational memory, (b) convergence problem in
the constrained minimization problem method and (c) inadequate mechanical behavior
according to the rotational velocity of the solids. For the first issue a dynamical algorithm
was presented, where the efficient use of computational memory has been achieved. Mainly
in the contact detection module, a dynamical neighborhood algorithm was developed.
Regarding the convergence problem, the original version uses Uzawa method to find the
solution for the constrained minimization problem. In this work an interior-point method
(barrier) has been used, by means of the CPLEX library. The convergence problem has
been solved, because the high convexity of the function to minimize the barrier method
best suits. Finally, the original approach consider, in a timestep simulation, all velocities
constant. In our case, a new set of equations has been presented particularly for the
rotational velocity non constant behavior.
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Figure 5: Computational time comparison between the original version (red dashed) and the new one
(blue continuous) for different amounts of solids.

All these improvements allow us to compute until 3000 solids in a reasonable computa-
tional time. In the Figure 5, the cpu time is shown for one iteration, without the CPLEX
computational cost. Clearly we observe an improvement between the original version and
the new one, where the computational order has been reduced. An important remark is
that with the original approach, no more than 1000 solids simulation can be achieved in
a reasonable computational time. As final conclusion, this extension offers the possibility
to simulate large scale problem, even so, we can continue to obtain more improvements.
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