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Abstract. Liquid metal instabilities in the aluminium production using the Hall-Héroult
process are a known problem. During the production process, currents up to 800kA and
voltages up to 5V are reached. The induced magnetic field from the current carrying
busbars, especially the vertical component, creates in combination with the horizontal
component of the current a high Lorentz force. This force induces liquid metal instability
known as Metal Pad Rolling (MPR). Experimental investigations of MPR are rare, since
cryolite dissolves most materials in short time, which make measurements inside the Hall-
Héroult cell complicated. For this reason numerical simulations are needed to examine
the flow- and the electromagnetic field, such that the stability conditions for Hall-Héroult
cell can be predicted.

This work focuses on the development of a multi-phase/region solver to predict MPR
instabilities. The solver is implemented in the open source framework OpenFOAM R©.
Volume of fluid method with phase-fraction based reconstruction approach is used to
solve the multi-phase system. The magnetic field is implemented using the magnetic
potential approach. The four step projection method [1] is employed to obtain a con-
servative formulation for the current density. A parameter study investigating the MPR
in a simplified Hall-Héroult cell is carried out for a wide range of magnetic fields and
current densities. One result of this study is that recalculating the magnetic field does
not influence the maximum amplitude of the moving interface. For the current densities
of 5 kAm−2 and 6 kAm−2, an increase in the external magnetic field initially destabilizes
the Hall-Héroult cell, followed by restabilization. Further increase in the external mag-
netic field results in stronger instabilities based on simulations. Presumably, it is the
first known occasion this specific behavior is observed in a numerical simulation. The
frequencies of the MPR instability obtained from the simulation corresponds with the
analytically determined frequency. Furthermore, a sensitivity study has been conducted
to understand the influence of the solver specific parameters.
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1 INTRODUCTION

The rotation period of newly born neutron stars, the movement of the liquid outer core
of the earth and the sloshing interface of aluminium and cryolite in a Hall-Héroult cell
have one thing in common, they are all magnetohydrodynamic (MHD) phenomena. MHD
is a relatively new discipline. The term was firstly used by Alfvén [2] who investigated
the propagation velocity (Alfvén velocity) of hydromagnetic waves in plasma with high
magnetic fields. The main intention of MHD is to combine the discipline of fluid dynamics
and the discipline of electromagnetics to describe the effect of moving conducting fluids
on the electromagnetic fields and vice versa. Nowadays MHD related research plays an
important role for many engineering applications such as an electrical storage using liquid
metal batteries [3, 4, 5] and in the aluminium reduction using the Hall-Héroult process
[6, 7, 8, 9]. A common problem of these applications are liquid metal instabilities.
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Figure 1: Simplified illustration of a Hall-Héroult cell. (a) Undisturbed interface with
purely vertical current density. (b) Disturbed interface with horizontal current component.

This research work only considers the metal pad rolling (MPR) instability and focuses
on a simplified Hall-Héroult cell as an application. Metal pad rolling, also called sloshing
is a liquid metal instability, which only occurs in multi-phase systems such as liquid metal
batteries and the Hall-Héroult process.

In an industrial Hall-Héroult cell the current goes through horizontal busbars into the
anode and after passing the cell from the cathode into horizontal busbars again. The
current going through the busbars will apply a toroidal magnetic field with a vertical
component pointing in the opposite direction as the current flow. This external magnetic
field is the main reason for the occurrence of the MPR [10]. For an undisturbed interface,
illustrated in fig. 1a, between the cryolite and the aluminium, the current density is
purely vertical and the Lorentz force induced by the cross product of the current density
and the external magnetic field is zero. However, in a real cell the interface will never
be perfectly horizontal due to external factors, which leads to a current density with a
horizontal vector component. This component forms with the external magnetic field a
Lorentz force perpendicular to both the current and the magnetic field which is shown

2



R. Gutt, V. Nandana and U. Janoske

in fig. 1b. Since the conductivity of cryolite is much lower than the conductivity of
aluminium, the current will take the path with the lowest resistance through the cryolite,
which leads to a higher current density at the crest of the interface. A higher current
in this context leads to a higher voltage at the crest. The horizontal current density is
therefore always directed from the crest of the interface to the trough.

Looking from the top on fig. 1b the Lorentz force will rotate anticlockwise. The
frequency of the oscillation can be analytically calculated by the solution of the gravity
wave, which is given for a hexahedron with infinite height as [11],

ωk,l =

√
g

(ρ1 − ρ2)
√
k2 + l2

ρ1coth(
√
k2 + l2h1) + ρ2coth(

√
k2 + l2h2)

. (1)

Here k and l are the wave numbers defined by the corresponding modes m, n, respec-
tively, the horizontal edge length Ly, Lz, as k = mπ/Ly and l = nπ/Lz, respectively, the
thickness of the aluminium layer h1, the thickness of the cryolite layer h2 and the densities
of aluminium and cryolite ρ1, ρ2, respectively. For the MPR instability, the dominating
mode is m = 1. For certain magnetic fields or current densities the mode 1 frequency is
not enough to describe the interfacial movement and it is necessary to use higher modes.
This analytical solution does not include the effect from the Lorentz force, which means
this solution acts only as an approximation. The true angular frequency might differ.

A disturbed interface does not necessarly lead to the onset of the MPR instability. An
onset criterion is given by Sele [12, 13] who compared the pressure induced by the Lorentz
force with the pressure given by the gravitational force.

β =
I0Bext

h1h2g(ρ1 − ρ2)
< βcrit (2)

The field I0 is the current for the undisturbed Hall-Héroult cell and g is the gravitational
acceleration. The Hall-Héroult cell, is stable if β is bellow the empirical determined critical
value βcrit, which lies for an industrial Hall-Héroult cell in the range of 6 ≤ β ≤ 340 [14].

Simulations are needed to examine the flow and the electromagnetic field, through
which stability condition of the cell can be predicted. To achieve this, a numerical model to
describe the MHD phenomena is developed in the open source framework OpenFOAM R©.
In addition a sensitivity and parameter studies for different external magnetic fields and
current densities are carried out.

2 MATHEMATICAL MODELS AND IMPLEMENTATION

In this section the modeling of the MPR instability and the special treatment con-
cerning the numerical implementation into the open source framework OpenFOAM R© are
described.

The behavior of an incompressible laminar fluid is described by the momentum equation
as

ρ0
∂u

∂t
+ ρ0(u · ∇)u = −∇p+ µ∇2u + f , (3)
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where u, µ, ρ0, p and f are the velocity, the dynamic viscosity, the density, the pressure
and the source terms, respectively. The source term f consists in this approach of the
Lorentz force fL = J×B, with J as the current density and B as the magnetic field and the
gravitational force fg = gh∇ρ, where h is the height and g, the gravitational acceleration.
The surface tension force is assumed to be negligible. In addition the conservation of mass
must be fulfilled for the velocity field, which is given for incompressible fluids as

∇ · u = 0. (4)

The current density, is divided into a velocity dependent j and a velocity independent
part J0

J = J0 + j (5)

and similarly for the electric potential,

Φ = Φ0 + φ. (6)

The velocity independent current density is calculated as

J0 = −σ∇Φ0, (7)

where σ is the electric conductivity. For a system without free charges the electric potential
is obtained with the requirement that the current density must be divergence free

∇ · (σ∇Φ0) = 0. (8)

In the finite volume discretization, the fields are interpolated at the faces and the di-
vergence is not solved for the center points of the control volumes. This means that
conservation is ensured at the faces of the control volume. For the reconstruction of
the current density to the center, a conservative interpolation scheme called four step
projection method is used [1].

The velocity dependent current density is derived by applying Ohm’s law for moving
conductors,

j = σ(−∇φ+ u×B). (9)

Since the current density must be divergence free the electric potential is obtained as

∇ · (σ∇φ) = ∇ · (σ(u×B)). (10)

For the transport of the electric potential across different fluid-/solid-regions the current
density of the connected regions needs to be equal at the sharing face, such that the
following boundary condition can be derived

Φb =
Φ1σ1
δx1

+ Φ2σ2
δx2

σ1
δx1

+ σ2
δx2

. (11)
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Here the indices b, 1 and 2 stand for the boundary and the two different regions, respec-
tively, which are sharing the boundary.

Similar to the splitting of the current density and the electric potential into a velocity
dependent and velocity independent part, the Lorentz force can be divided too,

fL = fL0 + fl, (12)

with

fL0 = −σ(∇Φ0 ×B), (13)

fl = σ(−∇φ+ u×B)×B. (14)

In the momentum equation the velocity dependent force is now taken implicitly and the
velocity independent force as an explicit source term. This treatment is used to reduce
numerical fluctuation caused by strong body forces such as the Lorentz force and the
pressure gradient [15].

To calculate the Lorentz force the magnetic field is needed. For the magnetic field the
quasi static assumption is made, which means that the magnetic field is assumed to be
time independent [3]. From Gauss’ magnetism law it can be concluded that the magnetic
field must be the rotation of a vector potential

B = ∇×A. (15)

Together with Ampere’s circuit law and by applying a Gauge transformation [16] the
following formulation is obtained,

−∇2A = µ0J. (16)

To solve this equation suitable boundary conditions are needed. Those are derived by
combining Gauss’ magnetism law with Biot-Savarts’ law

A(r) =
µ0

4π

∫
V

J(r′)

|r− r′|dV (r′). (17)

This volume integral is only solved at the boundaries by implementing a systolic algorithm
which is known from astrophysics to calculate the gravitational force of multiple celestial
objects on each other, which is the so called n-body problem. Another possibility to
obtain the magnetic field is by solving Biot-Savart’ law in the whole domain, which has
the drawback that the time consumption is higher.

For the simulation of the two fluids, the volume of fluid method is used. In this method
the momentum equation is only solved once for all fluids. A volumetric phase fraction α
is introduced, to differentiate the different fluids. The phase fraction needs to be updated
every time the fluid moves according to the momentum equation. Therefore the phase
fraction is updated using the transport equation, which is given as,

∂α

∂t
+∇ · (uα) = 0. (18)
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The transport equation for the volume phase fraction is solved using MULES (Multidi-
mensional Universal Limiter with Explicit Solution) [17].

A flowchart of the complete multi-phase/-region solver is given in fig. 2. For solving
the electric potential over the different regions, a segregated approach is applied, using
the boundary conditions given in eqn. 11. Another special feature of the solver is that the
number of recalculations of the magnetic field is user defined. This means recalculation
can be fully suspended to reduce the computational effort. For solving the momentum
equation, the PIMPLE algorithm is used, where the outer most loop is residual controlled.

Read initial and boundary conditions

Solve electric potential Φ0 for solid region

Solve electric potential Φ0 for fluid region

CalculateJ0 for fluid and solid region

‖Jn+1
0 −Jn0‖ < tol

recalc. B

Calculate magneticfieldB as∇ × A

Solve MULES forα

Solve Navier-Stokes equation

‖pn+1
0 −pn0‖ < tol

Solve Laplacian equation
for electric potentialφ

Calculate current density j

t < tend

finish

no

yes

no

yes

yes

no

yes

no

Figure 2: Flowchart of the multi-phase/-region solver using a segregated approach for
solving over multiple regions.

3 RESULTS AND DISCUSSION

In this section the general case set-up for the multi-phase/-region solver is described
in detail. Afterwards a sensitivity study is carried out for different cell width, Courant
numbers and different numbers for recalculating the magnetic field. In addition the results
of the parameter study are presented.

CASE SETUP

The multi-phase/-region case consists of three cuboidal shaped regions. The geometry
is illustrated in fig. 3 with the corresponding edge lengths. At the top and at the bottom of
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the geometry are the solid regions anode and cathode, respectively.
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Figure 3: 3D view of the multi-
phase/-region geometry with the
corresponding edge lengths. In-
cluding the regions anode (top),
fluid (center) and cathode (bot-
tom).

In the fluid region aluminium is initialized at the lower
half and cryolite is occupying the upper half of the re-
gion. For the external magnetic field a constant vector
field is introduced, which points in the opposite direc-
tion of the gravitational acceleration.

The material properties of the aluminium and cry-
olite phase are as follows. For aluminium, the elec-
tric conductivity is given as 3.5 · 106 Sm−1, the den-
sity, 2300 kgm−3 and the kinematic viscosity, 5.2 ·
10−7m2s−1. For cryolite, the electric conductivity is
given as 2.5 · 102 Sm−1, the density, 2150 kgm−3 and
the kinematic viscosity, 1.18977 · 10−6m2s−1.

The following boundary conditions are applied.
The velocity and the gradient of the pressure are set
to zero at the boundaries, which is congruent with the
closed boundary assumption. The boundary condi-
tions for the velocity dependent electric potential are
set such that the potential at the top and the bottom
of the fluid region are zero. The side walls are seen
as insulated, which means the normal gradient of the
electric potential is set to zero. The gradient of the
potential is set according to the deliberated current
density at the top of the anode. The gradient is calculated as

∇Φ0 =
J0

σ
. (19)

At the cathode bottom, the potential is set to zero.

The divergence scheme of the momentum equation and the time discretization is done
using a first order scheme. For all other discretization second order schemes are applied.

SENSITIVITY STUDY

A study of the solver specific parameter such as the influence of the mesh resolution and
the time step is carried out. Before this is done, it is important to define the quantities
which are comparable between the different simulations. The quantities of choice are the
angular frequency and the amplitude of the oscillating interface. The analytical solution
of the angular frequency is independent of the electromagnetic parameters (as shown in
eqn. 1). However, it is a suitable quantity to compare different mesh resolutions and
time steps. For the observation of the MHD effects, a quantity is needed which varies for
different current densities and magnetic fields. For this reason the amplitude is chosen
to compare multiple electromagnetic configurations. The benefit of the amplitude is that
it shows significant changes for different Sele numbers. The drawback is that there is no
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analytical solution to compare the obtained values from the simulation. For the sensitivity
studies of the cell resolution and time step, the magnetic field is calculated only once. The
error arising from this simplification is also investigated.

For different mesh sizes, the relative difference between the analytical and numerical
results are shown in fig. 4a. An asymptotic behavior can be seen in fig. 4a, where the
difference is less than 5 % for cell width less than 3mm. Since the analytical frequency
does not take into account the electromagnetic fields, a minor difference between the
frequencies obtained from the simulations and the analytical frequencies is expected. In
fig. 4b the different cell widths are compared in terms of the amplitude of the oscillating
interface. It can be seen that for a cell width above 2.5mm the amplitude is increasing
monotonically. The decrease of the cell width below 2.5mm, leads to an increase of the
amplitude. The amplitude shows no clear convergence behavior for decreasing cell width.
It is observed that the interface between aluminium and cryolite strongly diffuses for cell
widths smaller than 2mm. The diffusion is influencing the current density distribution,
which is causing a destabilization of the system.
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Figure 4: Relative difference of the angular frequency for different cell width (a). Plot of
the amplitude over different cell widths (b). (J0 = 10 kAm−2, B0 = 0.035T )

A study of the influence of time step on the numerical simulation is done by limiting
the maximum Courant number. For this study a cell width of 2mm is chosen, where the
diffusion is reasonably limited and the angular frequency results are in a good agreement
with the analytical solution. At first the relative differences of the angular frequency
for different Courant numbers are compared to the analytical solution. As displayed in
fig. 5a, the relative difference increases monotonically by decreasing the Courant number.
This at first seems to be counter-intuitive, since the relative difference increases. Since the
analytic solution is not taking into account the MHD effects, it can be concluded that the
wave propagation is influenced by the Lorentz force. It can be seen that, the difference
between the Courant number of 0.001 and 0.5 is less than 0.5%. As shown in fig. 5b, the
amplitude is increasing monotonically for decreasing size of the Courant number. It can
be assumed, that larger time steps are leading to a damping of the wave.
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Figure 5: Relative difference of the angular frequency for different Co (a). Plot of the
amplitude over different Co (b). (J0 = 10 kAm−2, B0 = 0.035T )

In the last step of the sensitivity study the influence of recalculating the magnetic field
is investigated. Since the angle between the interface of the two phases and the horizontal
is not negligibly small, it needs to be tested, if a recalculation of the magnetic field has
an impact on the solution.

The simulations are carried out with a Courant number of 0.1 and a cell width of 3mm.
The cell width of 3mm is a compromise between accuracy and speed. The results of the
study is displayed in fig. 6. The main difference between the plots is the time it takes
to reach a stable oscillation. The difference between the different angular frequencies
obtained from the simulations is less than 1 % and is therefore not shown here.
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Figure 6: Maximum amplitude over time for a different number of recalculation iterations
of the magnetic field B. (J0 = 10 kAm−2, B0 = 0.035T )
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PARAMETER STUDY

For the parameter study multiple, combinations of the external magnetic field and the
current density are applied. All simulations are carried out using a Courant number of
0.05 and a cell width of 2mm. Figure 7a shows multiple plots of the maximum amplitude
for different external magnetic fields, while the current density is held constant for each
plot. For the current densities 8 kAm−2 and 10 kAm−2, the amplitude shows an asymp-
totic behavior for an increasing external magnetic field. For an external magnetic field
larger 0.1T , the fluid becomes strongly unstable. For the simulations where the current
density is below 8 kAm−2, the maximum amplitude firstly shows the same trend as the
results for higher current densities, until the maximum amplitude reaches a point of in-
flection and eventually start to decrease for increasing magnetic field. For the current
densities of 5 kAm−2 and 6 kAm−2, together with an external magnetic field of 0.15T
the amplitude becomes stable again, a similar behavior has been also observed by the
experimental study of Pedchenko et al. [7]. The amplitude in the experiment stagnated
for increasing magnetic field strength and even decreased. It was claimed that this is due
to the compensation of the Lorentz force. The magnetic field was not further increased
in the experiment to observe whether a restabilization occurs.
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Figure 7: Maximum amplitude for different current densities and external magnetic fields
(a). Maximum amplitude for different Sele values and external magnetic fields. The
vertical gray line represents the critical Sele value (b).

This behavior is not yet fully understood and will be the topic of future works. By
plotting the same values over the Sele values, instead of the magnetic field fig. 7b is
obtained. The MPR instability for all current densities sets in for the same Sele value of
βcrit = 0.5.

4 CONCLUSION

A solver has been developed and the first simulation results were carried out, which
offer a good insight into the physics behind the MPR instability. It was shown that the

10



R. Gutt, V. Nandana and U. Janoske

solver shows a good convergence behavior for different time steps, while the convergence
behavior of the different mesh sizes needs to be addressed. In addition, it was shown
that recalculating the magnetic field has no major impact on the maximum amplitude,
which can reduce the computational cost in future studies. The obtained results from the
parameter study needs to be investigated and will be the topic of further works.
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netohydrodynamics of Liquid Metal. Oxford University Press, 2006.

[15] Weber, N. and Galindo,V and Weier, T. and Stefani, F. Thomas Wondrak Simulation
of Instabilities in Liquid Metal Batteries. Direct and Large-Eddy Simulation IX.
ERCOFTAC Series, Vol. 20. Springer, 2015

[16] Jackson, J.D. Klassische Elektrodynamik. de Gruyter, 2006.

[17] Deshpande, S.S. and Anumolu, L. and Trujillo, M.F. Evaluating the performance of
the two-phase flow solver interFoam. Computational Science & Discovery, Vol. 5,
2012.

12


