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Abstract. An algorithm for estimating the parameters of 1D blood flow modelling
is proposed. The following parameters are identified based on the blood flow velocity
measurement at certain points: elasticity of arteries, hydraulic resistances of peripheral
regions and cardiac output. The estimation method is based on the algorithm of linear
optimization. This method was tested by adjusting 1D hemodynamics parameters to fit
target values of systolic and diastolic blood pressures.

1 INTRODUCTION

Parameter identification problems are very common in the life sciences: we are given
a mathematical model and a set of measured data, and we try to adjust the parameters
in the model to fit the data. Such a problem arises constantly during construction of a
patient-specific model. Many approaches were proposed to solve this task. Some of them
based on Bayesian perspective [1], others on Kalman filter [2]. These are viable methods
to solve an inverse problem.

We propose an approach based on linear optimization problem. It is based on the as-
sumption that we have a number of similar tasks with almost identical sets of parameters.
An example is a coronary blood flow model. Each task has similar aorta and boundary
conditions. Left and right coronary arteries can be obtained from CT scans. We use one
base task to teach our algorithm how blood flow model reacts to changes in each param-
eter. Then we use calculated reactions to changes in each parameter to adjust another
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task to fit some target values. In this work, we adjust parameters of the aorta and stroke
volume to fit certain systolic and diastolic pressures. This allows us to get a model with
adequate ranges of blood pressure that can later be used to study coronary blood flow
under different conditions (stenosis, hyperemia).

An advantage of our method is its low dependence on computational resources. The
first step of the algorithm does require significant amount of calculations to be made.
We have to perform numerical simulations for each parameter. The second step involves
utilizing the results of previously made calculations to adjust parameters of a new model.
It requires a few iterations of numerical simulations.

2 Methods

2.1 Blood flow model

1D hemodynamics model used in this work is the model of viscous incompressible fluid
in a network of elastic tubes. A network of arteries can be obtained from CT images
or other clinical data. In this section, we present a brief description of the model, for
details we refer to [3]. Blood flow in each vessel is described by hyperbolic set of mass
and momentum balances

∂Ak/∂t+ ∂(Akuk) /∂x = 0, (1)

∂uk/∂t+ ∂
(
u2k/2 + Pk/ρ

)
/∂x = ffr(Ak, uk) , (2)

where k is an index of the vessel; t is time; x is distance along the vessel counted from
the vessel’s junction point; ρ is blood density (constant); Ak(t, x) is vessels’s cross-section
area; pk is blood pressure; uk(t, x) is linear velocity averaged over the cross-section; ftr is
a friction force given by

ftr(Ak, uk) = −4πµ
uk
A2

k

(
ηk + η−1

k

)
(3)

Elastic properties of the vessel wall material are described by the wall-state equation
providing response to the transmural pressure (the difference between blood pressure and
pressure in the tissues surrounding the vessel)

Pk(Ak)− P∗k = ρc2kf(Ak) , (4)

where S-like function f(Ak) is approximated as

f(Ak) =

{
exp (Ak/A0k − 1)− 1, Ak/A0k > 1

lnAk/A0k, Ak/A0k 6 1,
(5)

P∗k is pressure in the tissues surrounding the vessel; ck is small disturbances propagation
velocity; A0k is unstressed cross-sectional area.

At the terminal point of the arteries we impose resistance Rk

RkukAk = Pk − Pv. (6)
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pv = 8mmHg is venous pressure. At the entry point of the aorta the blood flow is assigned

u(t, 0)A(t, 0) = QH (t) . (7)

Here function QH(t) corresponds to the heart rate value of 1 Hz and stroke volume of
65 ml [4].

We postulate continuity of total pressureat bifurcation points

pi (Ai (t, x̃i)) +
ρu2i (t, x̃i)

2
= pj (Aj (t, x̃j)) +

ρu2j (t, x̃j)

2
, (8)

where i, j are indices of the vessels. x̃ is the coordinate of boundary point of the vessel.
To close the system we add the mass conservation condition and compatibility conditions
of hyperbolic set (1),(2) (see [5]).

2.2 Parameter estimation

An algorithm for estimating the parameters of 1D blood flow modelling is proposed.
The following parameters are identified based on the blood flow velocity measurement
at certain points: elasticity of arteries, hydraulic resistances of peripheral regions and
cardiac output (heart rate HR and stroke volume SV).

The algorithm consists of two steps. In the first step, we use well-calibrated and
detailed enough network of vessels. This network must include basic set of parameters ~p =
{p1, p2, ..pn}T . The set of parameters ~p produses set of target values ~u = {u1, u2, ..um}T .
We suppose that m 6 n. Each value uj can represent blood flow velocity, blood pressure,
average flow, etc. Output set of target values ~u is produced by blood flow mode M l with
the input set of parameters ~p

M(~p) = ~u. (9)

We introduce disturbances in parameters ~pk = ~p+∆~pk, k = 1, 2..K. In the simplest case
∆~pk = {0, 0, ..,∆pk, ..0}T and K = N . Each disturbance in parameters ∆~pk corresponds
to disturbance in target values ∆~uk

M(~p+ ∆~pk) = ~u+ ∆~uk. (10)

Second step of the algorithm involves identification of parameters of a new model M̃ .
We suppose that models M̃ and M are very close and correspondance between ∆~pk and
∆~uk holds

M̃(~p+ ∆~pk)− M̃(~p) ≈ ∆~uk. (11)

The aim is to find set of parameters ~p∗ that will lead to a known set of target values ~u∗.
This means that we want to find disturbance ∆~p =

∑K
k=1 xk∆~pk such as

M̃(~p+ ∆~p)− M̃(~p) = ∆~u, (12)
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where ∆~u = ~u∗ − M̃(~p). We propose to find coefficients xk from

∆~u =
K∑
k=1

xk∆~uk, xmin
k 6 xk 6 xmax

k , k = 1..K, (13)

K∑
k=1

|xk| → min, (14)

where xmin
k , xmax

k can be defined based on the physiological range of parameters.
Task (13), (14) can be reformulated as linear optimization problem and solved with

simplex method [6]. This will give us a set of calculated values ~ucalc. If difference || ~ucalc−
~u∗|| is significant second step can be repeated. We substitute initial input set ~p with ~p+∆~p

and ∆~u with ~ucalc− ~u∗. After that we formulate new linear optimization problem (13),(14)
and calculate new set of target values.

Condition (14) can take other forms, for e.g.

K∑
k=1

x2k → min, (15)

but this will force us to develop other methods to solve (13), (15).

3 Results

3.1 Aortic parameters estimation

In this example, we estimate parameters of the aorta to satisfy measured systolic and
diastolic pressures. For the base model M we use a network of 4 vessels (Fig. 1, A). On the
terminal points of the left coronary artery (LCA), right coronary artery (RCA) and aorta,
we impose hydraulic resistance (6). Resistance of LCA is RLCA = 72 kba·s/cm3, resistance
of RCA is RRCA = 86 kba · s/cm3, resistance of the aorta is RRCA = 2.3 kba · s/cm3.
Elasticity (5) of both LCA and RCA is ccor = 1200 cm/s. Elasticity of aorta and aortic
root is c = 430 cm/s. On the inlet of the root blood flow is assigned (7). Heart rate
HR = 60 bps and stroke volume SV = 65 ml.

The input set of parameters consists of resistance at the terminal point of the aorta R,
the elasticity of the aorta c and stroke volume SV . Target values are systolic and diastolic
blood pressures in the aorta:

~p = {R, c, SV }T , ~u = {Ps, Pd}T . (16)

We set ∆pk to 10% of base value of parameter pk. We calculate disturbances ∆~uk (10) and
use obtained data for parameter estimation of new model M̃ . Model M̃ uses same aorta
and root but different LCA and RCA (Fig. 1, B). We calculate input set of parameters
for the model M̃ for different target values of systolic and diastolic pressures. After that,
we use this set of parameters to calculate systolic and diastolic pressures. Results are
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Figure 1: A: network used for the base model. B: network used for parameter estimation; this network
is obtained from patient’s CT-scans [7]

Figure 2: Target and calculated values of systolic and diastolic pressure. Two sets of calculated values
are presented: after single iteration and after five iterations.

presented on Fig. 2. Corresponding target values and calculated values are connected
with a dotted line.

For each target value of Ps and Pd we present two calculated values: after single
iteration and after five iterations. Further iterations did not provide a substantial increase
in accuracy. After one iteration root-mean-square error for systolic pressure is σsys =
2.7mmHg and for diastolic pessure σdias = 2.1mmHg. Maximum deviations between
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calculated and target values are σmax
sys = 12mmHg and σmax

dias = 8mmHg. After five
iteration root-mean-square error for systolic pressure is σsys = 0.7mmHg and for diastolic
pessure σdias = 0.6mmHg. Maximum deviations between calculated and target values
are σmax

sys = 2mmHg and σmax
dias = 2mmHg.

4 CONCLUSIONS

Linear optimization provides a solid approach to parameter identification problems.
With robust modelling and simulation, we obtain posterior values that correspond to
target values of systolic and diastolic blood pressure.

In this work, we described only a basis of linear optimization approach. In its current
form described algorithm might struggle with significant non-linearities and wider ranges
of target values. Extending amount of preliminary simulations and generalizing to a non-
linear optimization could solve these problems. Another limitation is a requirement for a
robust basic task with known ranges of parameters. We proposed this algorithm to deal
with a set of similar parameter identification tasks. The descrbed approach does not work
well when investigating a new problem in its current form.
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