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Abstract. This paper is concerned with the determination of design sensitivity infor-
mation of structures with elastoplastic material behavior in the context of shape opti-
mization. Incidentally, design means geometry and external load parameters. Sensitivity
information is provided by a variational approach based on an enhanced kinematic con-
cept that allows a strict separation of geometry and physics. Continuous equations are
first derived and subsequently discretized to compute structural response and response
sensitivities simultaneously within a finite element framework, which results in a very
efficient algorithm to obtain gradient information compared to other numerical methods.
The obtained gradients can be used to solve inverse problems utilizing gradient based
mathematical optimization, such as Sequential Quadratic Programming (SQP).

1 INTRODUCTION

In structural shape optimization, the geometrical shape of a construction is considered
and optimized with respect to certain properties. Additionally, in this paper not only
the geometric shape but also the shape of the external loads is considered to define the
design of a structure. In this context, we are interested in changes of state variables and
the objective function caused by variations of geometry and external loads in the refer-
ence configuration. Design sensitivity analysis (DSA) provides these sensitivities required
for gradient based mathematical optimization. Numerical, analytical or semi-analytical
approaches can be used, an overview is given in [22] and [26]. Analytical gradients can
either be derived from discretized quantities or from continuous quantities that are dis-
cretised subsequently. The material derivative approach (MDA), see [13] and [1], and the
domain parametrization approach (DPA), see [10] and [23], are known from literature.
In this work, we use a variational approach advocated in [6, 5, 4]. Here, an enhanced
concept of continuum mechanics using intrinsic and local coordinates is introduced. As
a consequence, geometry and physics are strictly separated and corresponding variations
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can be easily computed on continuous level. A subsequent discretization yields the central
ingredients of the DSA, i.e. the pseudo load and sensitivity matrices, see [3].

Sensitivity analysis regarding external loads has been incorporated in [27, 28] and
references therein. Here, the position of the external load is chosen as design variable. DSA
in the context of inelastic, path-dependent materials requires the additional computation
of variations of internal variables that represent the deformation history. Since the late
1980s many publications concentrate on DSA for time-dependent problems. The authors
in [7] presented a method to analyze sensitivities of structures with linear elastic, kinematic
hardening material behavior, limited to monotonic loading. In [25] a general method of
DSA for time-dependent problems is proposed. Here, especially the direct differentiation
method (DDM) and the method of adjoint variables (ASM) are compared. The authors
recommend using DDM for path-dependent problems, due to the numerical overhead
arising in ASM. Similar works are [14], where explicit integrations are used, and [17],
where the boundary element approach is used. Tangent operators for DSA of plasticity
were firstly derived in [16], see [11] for more details on DPA. The authors in [19] formulated
a DSA method for infinitesimal elastoplasticity without consideration of internal variables.
In [12] a strategy of using an implicit integration algorithm in connection with a consistent
DSA formulation considering internal variables is proposed. A formulation considering
finite elastoplastic material behavior for stationary forming processes can be found in [2].
In [29] an effective algorithm based on the aforementioned direct variational approach
has been developed. Here, infinitesimal as well as finite elastoplastic deformations and
shakedown analysis is considered. The DSA also includes variations of internal variables.
The latter work can be seen as basis for DSA in this paper.

The paper is organized as follows. In Sec. 2, we summarize some preliminaries about
the notation, kinematics and fundamentals of variational sensitivity analysis. Sec. 3 gives
a brief overview on the chosen constitutive model and integration algorithm. We focus on
a large strain J2-elastoplasticity as can be found in the relative literature, see e.g. [30], [31,
20, 21]. Next, variational sensitivity analysis considering inelastic deformations, as in [29],
and further enhancements of the approach, that is considering external loads as variable
design parameters are presented in Sec. 4. By rearranging the obtained equations, we
end up with expressions only depending on design changes. Finally, we emphasize the
findings with a selected numerical example in Sec. 5.

2 PRELIMINARIES

This section introduces the main concepts utilized in this paper and gives hints about
the notation.

2.1 Classical kinematics

We assume an open bounded material body in an undeformed configuration K ⊂ E3

with Cartesian basis Ei. Its boundary is considered piecewise smooth, polyhedral and
Lipschitz-continuous Γ = ∂K, with Γ = ΓD ∪ ΓN, where ΓD and ΓN denote the Dirichlet
and Neumann boundary, respectively, such that ΓD ∩ ΓN = ∅. The deformation of the
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material body from K to a corresponding deformed configurationM⊂ E3 with Cartesian
basis ei is given by

ϕ :

{
K × It →M⊂ E3

(X, t) 7→ x = ϕ(X, t).
(1)

For any fixed time t ∈ It, ϕ maps the reference particles X from the reference config-
uration K to the spatial coordinates x in the deformed configuration M.

The corresponding tangent mapping, that is the deformation gradient, and its Jacobian
are given by

F = ∇X ϕ(X, t) =
∂xi
∂Xj

ei ⊗ Ej and J = det F. (2)

2.2 Enhanced kinematics

In the context of shape optimization, we do not consider a material body with a fixed
reference configuration. Thus, it is convenient to use an enhanced kinematic concept
within a general continuum mechanical framework. The authors in [18] formulated an
improved viewpoint on the material body using arguments from differential geometry, see
[24] and [15] for a classical presentation. Motivated by this theoretical background, see
[8] for further details, the idea is to rigorously separate physical quantities into geometry
and displacement mappings, see [6, 5]. In detail, a fixed local parameter space B with
Cartesian basis Zi and local coordinates Θ can be introduced.

This idea yields a decomposition of the deformation mapping, Eq. (1) into two indepen-
dent mappings, i.e. the design dependent geometry mapping κ and the time dependent
motion mapping µ

κ :

{
B × Is → K ⊂ E3

(Θ, s) 7→ X = κ(Θ, s)
; µ :

{
B × It →M⊂ E3

(Θ, t) 7→ x = µ(Θ, t).
(3)

for any fixed time t ∈ It and any design s ∈ Is. The corresponding tangent mappings and
their Jacobian are given by

K = ∇Θ κ(Θ, s) =
∂Xi

∂Θj

Ei ⊗ Zj and Jk = det K, (4)

M = ∇Θµ(Θ, t) =
∂xi
∂Θj

ei ⊗ Zj and JM = det M, (5)

which denote the geometry gradient and the motion gradient and their Jacobian, respec-
tively. With these mappings, the deformation mapping, Eq. (1), and the deformation
gradient, Eq. (2), can be written as

ϕ = µ ◦ κ−1 and F = M K−1. (6)

Remark 1. The parameter s is used here as a scalar design variable, which parametrizes
the material body in the reference configuration K = K(s), as well as the material points
X = X(s). A valuable advantage of the aforementioned enhanced kinematic concept is
the absence of implicit dependencies. These dependencies arise not until the definition of
global equilibrium.
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2.3 Variations and derivatives

The variation of any quantity ( · )(s; u) w.r.t. u at fixed design ŝ is defined as

δu( · ) =
d

dε
( · )(ŝ; u + ε δu)

∣∣
ε=0

=: ( · )′u (7)

and the variation of any quantity ( · )(s; u) w.r.t. s at fixed û is given by

δs( · ) =
d

dε
( · )(s + ε δs; û)

∣∣
ε=0

=: ( · )′s. (8)

With this notation, the total variation of a quantity ( · )(u, s), depending on the defor-
mation u and the design s, is given by the sum of the partial variations w.r.t. u at fixed
design ŝ and w.r.t. to s at fixed deformation û

( · )′(u, s) = ( · )′u(u, ŝ) + ( · )′s(û, s) or δ( · ) = δu( · ) + δs( · ). (9)

2.4 Fundamentals of variational sensitivity analysis

To obtain the structural response u for any given design s, in structural analysis the
weak form of equilibrium R(u,η) = 0 is solved for any arbitrary test function η. Any vari-
ation in design δs must not violate equilibrium, i.e. the total variation δR has to vanish.
In the elastic case, δR consists of the sum of the partial variations w.r.t. displacements u
and design s, i.e.

δR = δuR + δsR = k(η, δu) + p(η, δs)
!

= 0, (10)

with the bilinear forms

k(η, δu) =
∂R

∂u
δu; p(η, δs) =

∂R

∂s
δs, (11)

representing the tangent stiffness operator and the general tangent pseudo load operator,
respectively, see [3] for details. Finite element discretization leads the discrete residual
vector R

R(u,η) ≈ R(uh,ηh) = ηT R. (12)

Thus, we obtain the discrete version of Eq. (10)

δR = ηT δR = ηT [K δu + P δs] = 0 (13)

with the discrete condition
δR = K δu + P δs = 0. (14)

Here, K is the tangent stiffness matrix and P is the pseudo load matrix.
Furthermore, by manipulating Eq. (14) we obtain the sensitivity matrix S that de-

scribes the discrete reaction of the mechanical system to any design perturbation

δu = −K−1 [P δs] = S δs, with S := −K−1 P. (15)
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With this, the variation of any arbitrary objective or constraint function f(u, s) can be
expressed in terms of design changes

δf = δuf + δsf =
∂f

∂u
δu +

∂f

∂s
δs =

[
∂f

∂u
S +

∂f

∂s

]
δs. (16)

Remark 2. The enhancement of variational design sensitivity analysis for the elastoplas-
tic case is shown in Sec. 4.

3 CONSTITUTIVE MODEL

The general isotropic constitutive model used in this paper is a large strain extension
of the classical J2-elastoplasticity by means of a logarithmic strain measure. For details
on constitutive equations and the integration method, see e.g. [31], [20] or [21].

3.1 Model equations

The weak for of the equilibrium condition reads

R(u,η) =

∫
K

S : δE dV −
∫
K

b̄o · η dV −
∫
∂K

t̄o · η dA = 0 (17)

with S and E denoting the second Piola-Kirchoff stress tensor and the Green-Lagrange
strain tensor, respectively. Assuming large deformations, the deformation gradient F is
split multiplicatively into an elastic and a plastic contribution

F = Fe Fp. (18)

Given a free energy potential of the general form

ψ = ψ(εe,h), (19)

the Kirchhoff stress tensor can be calculated as

τ = ρ
∂ψ

∂εe
, (20)

with the elastic logarithmic strain εe = 1
2

ln Be = 1
2

ln
(
Fe FeT

)
. A von Mises type yield

function is incorporated

Φ =
√
J2(τ d)−

√
2

3
Y (α) ≤ 0, (21)

where J2(τ d) denotes the second invariant of the deviatoric Kirchhoff stress tensor and
Y (α) = Y0 +H α defines the elastic threshold in terms of the linear hardening slope H. As
the result of the maximum dissipation principle, we receive the Kuhn-Tucker conditions

γ̇ ≥ 0, Φ ≤ 0, γ̇ Φ = 0. (22)
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Here, γ̇ denotes the rate of the plastic Lagrange multiplier. The evolution equations for
the plastic variables are given by Prandtl-Reuss flow rule and hardening laws

Fe Lp Fe−1 = γ̇
∂Φ

∂τ
; Lp = Ḟp Fp−1; α̇ =

√
2

3
γ̇. (23)

Remark 3. Although the deformation process is quasi-static, we need to introduce a
pseudo-time interval [to, T ], so as to capture the deformation history. Thus, all occurring
quantities are dependent on pseudo-time t, e.g. F = F(t). The pseudo-time dependency
has been omitted here for notational convenience.

3.2 Consistent tangent operator

The occurring evolution equations (23) have to be integrated over time. Hence, an
implicit Return-Mapping scheme is incorporated. Corresponding to [21], the elastoplastic
spatial tangent operator consistent with the Return-Mapping algorithm reads

aijkl =
1

J

∂τij
∂Fkq

Flq − σil δjk. (24)

The term
∂τij
∂Fkl

can be obtained utilizing the chain rule

∂τ

∂F
=

∂τ

∂εe,tr
:
∂εe,tr

∂Be,tr
:
∂Be,tr

∂F
. (25)

Note that the superscript tr denotes the trial values arising in the elastic predictor step
of the Return-Mapping scheme.

Remark 4. An implicit (backward) Euler method is used for time discretization, thus
all occurring rate quantities are replaced by their incremental values within the pseudo-
time interval [tn, tn+1]. The flow vector N and the yield surface are replaced by their
specific values at the end of the time increment tn+1. In the following, the subscript
n+ 1 is omitted for notational convenience. Note that all quantities without subscript are
quantities at pseudo-time tn+1 except those with subscript n.

4 SENSITIVITY ANALYSIS

In order to use gradient based mathematical optimization methods, it is necessary
to compute the gradients of the objective functional, as well as the gradients of the
equality and inequality constraints. The design vector s = [X,λ]T contains the geometry
parametrization X and the load parametrization λ. Thus, the equations in Sec. 2.4 must
be developed further.

4.1 Variation of the equilibrium condition

In contrast to the purely elastic case, Eq. (10), we have to consider the partial variation
of the weak equilibrium w.r.t. history terms additionally, cf. [29]. This yields

δR = δuR + δsR + δhnR = k(η, δu) + p(η, δs) + h(η, δhn)
= δuR + δXR + δλR + δhnR = k(η, δu) + p̂(η, δX) + l(η, δλ) + h(η, δhn),

(26)
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with the already known tangent stiffness and pseudo load operators k(η, δu) and p̂(η, δX)
and the additional bilinear forms

l(η, δλ) =
∂R

∂λ
δλ; h(η, δhn) =

∂R

∂hn
δhn, (27)

which represent the influence of the load parameters and the internal history variables
and are therefore called the load and history sensitivity operators, respectively.

4.1.1 Response sensitivity

Similar to Eq. (15) the variation of the structural response δu can be calculated

δu = −
[
∂R

∂u

]−1 [
∂R

∂X
δX +

∂R

∂λ
δλ+

∂R

∂hn
δhn

]
. (28)

A matrix representation reads

δu = −K−1 [PX δX + Pλ δλ+ H δαn] = −K−1 [P δs + H δαn] , (29)

with P = [PX ,Pλ] and Pλ and H denoting the load and history sensitivity matrices.
Remark 5. Since initially the total variations of the history terms δh0 are zero at

time t0, in the first pseudo-time interval [t0, t1] Eq. (29) reduces to

δu = −K−1 P δs = S δs, (30)

regardless of whether it is an elastic or a plastic step. The influence of the history terms
only appears, if the prior load step has caused plastic deformations, cf. [29].

4.1.2 Total sensitivity matrix

For any load step, that follows a load step that has caused plastic deformations, we
have to take the total variations of the history terms into account, see Eq. (29). Splitting
the variations of the history terms into their partial variations w.r.t. displacements and
design, we get

δhn =
∂hn
∂un

δun +
∂hn
∂s

δs =

[
∂hn
∂un

Sn +
∂hn
∂s

]
δs = Gn δs, (31)

where Sn denotes the sensitivity matrix of the prior load step. Inserting Eq. (31) into
Eq. (29), we receive the total sensitivity matrix S including the influence of the plastic
variables

δu = −K−1 [P δs + H Gn δs] = S δs. (32)
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P1 P2

P3 P4

P5 P6

P7 P8

(a)

ū(sin)

(b)

Material Parameter

Young’s modulus E = 100

Poisson’s ration ν = 0.29

Yield stress Y0 = 0.45

Hardening slope H = 100

Geometry Parameter (sin1−4)

P3 (0.1, 3.33)

P4 (0.9, 3.33)

P5 (0.1, 6.67)

P6 (0.9, 6.67)

Load Parameter (sin5−10)

f1 −a1 = b1 = 20, c1 = 0

f2 a2 = −b2 = 20, c2 = 0

(c)

Figure 1: (a) Initial geometry and loading, (b) Deformation, (c) Parameter

4.2 Objective and constraints

The gradient of any objective functional J as well as any constraint function can be
computed analogously to the variation of the equilibrium condition

δJ = δuJ + δsJ + δhnJ =
∂J

∂u
δu +

∂J

∂s
δs +

∂J

∂hn
δhn. (33)

With Eq. (31) and Eq. (32), we obtain an expression only depending on design changes

δJ =

[
∂J

∂s
+
∂J

∂u
S +

∂J

∂hn
Gn

]
δs. (34)

5 NUMERICAL EXAMPLE

To verify the presented method, we consider the mechanical problem illustrated in Fig.
1 (a). The geometry is given by a NURBS surface with eight control points P1 − P8 and
the two knot vectors U = [0 0 1 1] and V = [0 0 0 0.5 1 1 1], thus the edges of the
surface are linear in x-direction and cubic in y-direction. All weight factors are zero, thus
the NURBS curves at the edges simplify to B-Splines. The geometry is discretized with
nel = 250 4-node quadrilateral elements. This results in a total amount of dof = 612
degrees of freedom. The loads f1 and f2 are parametrized using a quadratic function
of the general form f = λ (a x2 + b x + c) and applied stepwise to their maximum value
and then released (λ = 0, .., 1, .., 0), so that only plastic deformations remain after the
deformation process. The structural response, that is the deformation ū(sin) calculated
with the initial values of the design variables sin, is displayed as wire frame in Fig. 1 (b).
Chosen model parameters are summarized in Fig. 1 (c).

8



J. Liedmann and F.-J. Barthold

P1 P2

P3 P4

P5 P6

P7 P8

(a)

ū(s0)

(b)

Geometry Parameter (s01−4)

P3 (0, 3.33)

P4 (1, 3.33)

P5 (0, 6.67)

P6 (1, 6.67)

Load Parameter (s05−10)

f1 a1 = b1 = 0, c1 = 1

f2 a2 = b2 = 0, c2 = 1

(c)

Figure 2: (a) Start geometry and loading, (b) Deformation, (c) Parameter

Starting with a different geometry and load setup, cf. Fig. 2, we want to identify
the initial geometry and loading by minimizing the difference between the initial and the
current structural response during the optimization process.

Thus, we state the following optimization problem

min
s∈Rndv

J(u(s)) =
1

2
aT a, with a = ū(sin)− u(s)

s.t. sli ≤ si ≤ sui .

(35)

The geometric control points P3, P4, P5 and P6 are chosen As design variables s1−4 and
allowed to move in horizontal direction within a relative range of [−0.2, 0.2]. Additionally,
the load parameters a1, b1 and c1, as well as a2, b2 and c2 are chosen as design variables
s5−10 and are allowed to change within a range of [−24, 24]. Thus, in total we have
ndv = 10 design variables. The objective function J has a value of J0 = 5.2976× 101 at
the beginning of the optimization process. Fig. 3 summarizes the optimization process.
After 115 iterations, the truncation criterion, chosen as the relative difference of the

objective function during the iterations
∣∣∣Jit−Jit+1

Jit

∣∣∣ ≤ tol = 1× 10−7, is reached, where the

value of the objective is J115 = 5.9512× 10−7.
The history of the objective function is displayed in Fig. 3 (a). Due to the precise gradient
information obtained utilizing the variational approach, the objective is rapidly decreased
within the first few iterations. In Tab. 1 all design variables identified in the optimization
process are summarized and a relative error ε = | s115−sin

sin
| × 100 is calculated.
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(a)
P1 P2

P3 P4

P5 P6

P7 P8

(b)

ū(s115)

(c)

Figure 3: Optimization, (a) Objective history, (b) Optimized model (c) Deformation

s115
1−4 value ini. value rel. error

P3 (0.1002, 3.33) (0.1, 3.33) ε = 0.20%

P4 (0.9002, 3.33) (0.9, 3.33) ε = 0.20%

P5 (0.1001, 6.67) (0.1, 6.67) ε = 0.10%

P6 (0.9001, 6.67) (0.9, 6.67) ε = 0.10%

s115
5−10 value init. value rel. error

a1 −19.895 −20 ε = 0.53%

b1 19.913 20 ε = 0.44%

c1 0.012 0 ε = 1.20%

a2 19.886 20 ε = 0.57%

b2 −18.862 −20 ε = 5.69%

c2 0.0335 0 ε = 3.34%

Table 1: Optimization results and relative error

6 Conclusions and outlook

Design sensitivity information regarding geometry and external loads of elastoplastic
structural response has been obtained using a variational approach based on an enhanced
kinematic concept. This concept allows for a strict separation of design and physical
quantities. After a subsequent discretization, the sensitivities can be calculated simul-
taneously to the structural response within a finite element framework. The numerical
example shows reasonable results, as the method is able to identify a design that has
caused a specific structural response.

Further investigations will address the topic of design exploration by means of singular
value decomposition (SVD). The author in [9] introduced the term internal structure of
sensitivities as an abbreviation for singular values and vectors of the sensitivity matrices.
This additional information can be used to identify major and minor design changes and
consequently redefine the optimization problem.
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