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Abstract. In this contribution, a novel concept of coupling Fluid-Structure Interaction (FSI)
with an ultrasonic wave propagation is proposed. It is referred to as extended Fluid-Structure
Interaction (eXFSI) problem. The eXFSI is a one-directional coupling of typical FSI problem
with an ultrasonic wave propagation in fluid-solid and their interaction (WpFSI). The WpFSI is
a strongly coupled problem of acoustic and elastic wave equations, where FSI problem solution
feeds in automatically the boundary condtions at each time step. The principal aim of this
research is the exploration and development of concepts for the efficient numerical solution of
the eXFSI problem. The finite element method is used for the spatial discretization. Temporal
discretization is based on finite differences and is formulated as a one step-6 scheme, from
which we can consider shifted Crank-Nicolson and the fractional-step-f schemes. The nonlinear
problem is solved by a Newton-like method. To demonstrate the application of the eXFSI
and WpFSI models, we elaborate on the design of the on-live and off-live Structural Health
Monitoring (SHM) systems for composite material and lightweight structure, respectively. The
implementation is accomplished via the software library package DOPELIB.

1 INTRODUCTION

Mathematical modeling for the purpose of engineering implementation requires both com-
prehensive mimicing of the physical system, but also computational efficiency. Here, we ex-
plore the caveats of mathematical modeling and numerical solution of the problem that is a part
of Structural Health Monitoring (SHM) system. In other words, we focus on the computational
side of the SRM system, which is indeed closely tied to the hardware part of SHM system. The
ultimate benefit of using the SHM system is the ability of damage idenftification under the prin-
ciple of non-destructive testing. The applications include, but are not limited to, mechanical,
aerospace, or civil engineering infrastructures. In the present work, we contribute to the rather
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sparse literature on computational techniques, which support the SHM process. In particular,
we explore modeling caveats of the so-called on-line SHM system. The on-line SHM system
tracks the structural integrity throughout the operation of the object under consideration. The
model developed in the present work can be employed in a varies structures e.g. bridge, airplane
during the flight, wind turbine. The differences would come in the parametrization. To this end,
most studies that analyze SHM system are experimental. Thereby, proposing the novel model,
we ensure the credibility of our results by contrasting them to the experimental data.

In a nutshell, the mathematical model we develop couples the wave propagation phenomena
with the fluid-solid interaction (FSI) problem. It comprises wave-propagation-based methods
and falls under the FSI problems category. Thereby, we rely upon fundamental pronciples of the
FSI theory. Numerical solution of the FSI problem calls for resolving both fluid flow and elastic
structural deformations. The associated complexity drives the need for the monolithic approach,
which emerged over the past few years as a first-choice methodology for multi-physica prob-
lems. Overall, the FSI simulations have contributed to a better understanding e.g. of the convec-
tive flow, pressure fields, and deformation through the solution of the nonlinear multi-physics
problems. Moreover, the fact that the FSI effect may jeopordize structural integrity justifies the
efforts put into its comprehensive solution (cf. [1, 2, 3, 4, 17, 18]). In the framework of eXFSI,
the following two models are coupled (cf. [5, 6,7, 8,9, 10, 11, 12, 14]):

e Nonlinear FSI in the ALE framework. This includes the incompressible Navier-Stokes
in the ALE framework, non-linear elastodynamics in Lagrangian framework, and the
biharmonic mesh moving model;

e Nonlinear wave propagation (WpFSI) problem in the ALE framework, which is a coupled
problem of the time-harmonic elastic wave propagation with a signal force in the ALE
framework, and acoustic wave propagation in the ALE framework.

In the nonlinear FSI model, we deal with three types of nonlinearities: fluid convection, a ge-
ometrically nonlinear Green-Lagrange strain tensor, and the nonlinear ALE mapping. With
regard to the second model, we emphasise that we consider a strongly coupled time-harmonic
acoustic and elastic wave problem in the ALE framework in order to account for the structural
deformation due to the FSI effect. The eXFSI is solved via monolithic technique. To combine
two alternative settings — Eulerian and the Lagrangian — we rely upon the ALE framework.
A basic partitioned approach does not contain a variational equation for the eXFSI problem.
Therefore, we introduce an auxiliary coordinate transformation function T (i.e. the ALE map-
ping) for the Eulerian setting. The ALE approach provides a simple procedure to couple solid
deformations with fluid flows by a monolithic solution algorithm. In such a setting, the fluid
flow and wave propagation problems are transformed to a reference configuration by the ALE
mapping. To sum up, the novelties of the present work are two-fold.

e First, we propose the FE-based on-live SHM model eXFSI. It merges a coupled wave
propagation problem in the ALE framework and the FSI model. By means of eXFSI,
we investigate the wave propagation in a dynamic structure. To mimic the latter, we
introduce the fluid flow, which alters the elastic beam. Thereby, we are also dealing with
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the dynamic boundary conditions. The dynamic boundary conditions, in turn, alter the
wave propagation.

e Second, we propose a dual linear solving technique to address the eXFSI problem using
monolithic algorithm.

2 NOTATION AND FUNCTION SPACE

Here, we introduce the domain, where the interactions between the two phases of a matter,
i.e. fluid and solid, are explored. Let us consider the time interval / = [0,7] with T" > 0.
The domain Q(t) C R, with d € {2, 3}, is open, connected, bounded, and varies with time
t € I. The domain comprises two time-dependent subdomains €2;(¢) (fluid part) and Q,(t)
(solid part): Q(t) = Qf(t) U Q4(t). (cf. Figure 1). The two subdomains do not overlap i.e.
Qs(t) N Q(t) = 0. Furthermore, the domain (¢) has a Lipschitz boundary 9Q(t) C R,
which is subdivided into four parts as follows: 9Q(t) = 0, (t) U 0Quau(t) U 0Qpgse(t) U
Ot (t), where 0, (t), OQpan(t) and 0,5 (t) are Dirichlet boundaries (for the velocities
and displacements) and 0€,,,(t) denotes the fluid outflow Neumann boundary. The fluid-solid
interface i.e. boundary between the solid and fluid 9€2;(t) C R is given by: 9Q;(t) =
Qf(t) N Q4(t). The outward normal vectors of fluid and solid at the fluid-solid interface are
denoted by n s and n, respectively. The initial (henceforth reference) domains, i.e. at¢ = 0, are
denoted by Q ¢ and Q). Here, the fluid boundary BY) s C R4 and solid boundary 90, c R1
are given by: o0 = E)Qi U o0 o U By #n, and 8QS = 00); U GQS p- Accordingly, the initial
common interface boundary 9); © R is referred to by a0 = Q fﬂQS, and the corresponding
outward normal vectors at the fluid-solid interface are denoted by 7 and 7n,. The fluid, solid
and wave displacements and velocities are set to zero on Bl p. On 8th, the displacements
are presumed to be zero. The prestressed configuration presumes the application of the stress
prior to the reference time ¢ = 0. This implies possible deformation already at time ¢ = 0. The
choice of the initialisation is application-dependent. Since we are using a variational monolithic
coupling method [4, 5, 6, 8, 10, 11, 12, 17], the displacements and velocity spaces are extended
to the entire domain €. For the eXtended Fluid-Structure Interaction (eXFSI) problem, we work

with the following spaces:
EQX = L2(Qx), E%X = LQ(QX)/R, (1)
Vo, = H'(Qx), V3 = Hj(Qx).

Here, X = {s, f} is a set of suffixes: “f” stands for the fluid and “s” stands for the solid
domain. For convenience, we omit the explicit time-dependence term when indicating the time-
dependent domains i.e. 2 := €(t). Last but not least, for the current domains €2, {2 and €2, we
can denote the corresponding spaces without the hat (") notation.

3 MATHEMATICAL MODELLING

In this Section, we describe the design of the model, which offers a holistic approach to the
inter-relations between the FSI problem [1, 5, 6, 13, 14, 15, 17] and modelling and simulation of
the ultrasonic wave propagation in the ALE variational formulation [5, 6, 7, 8, 9, 10, 11]. This
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fully-coupled modelling framework is referred to as the eXtended Fluid-Structure Interaction
problem [5, 8,9, 10, 11, 12, 14].
3.1 The eXFSI Problem

Let us consider, O, and 0" are suitable extensions of Dirichlet inflow data. Find the global
velocity © € {oP —I—VD} global displacement 1 € {u” —I—VO} additional velocity w € %3 Sfluid

pressure Dy € L o, global wave displacement u,, € VO and global wave velocity v,, € LQ,

such that the initial conditions ©(0) = %, 4(0) = 120, iy, (0) = @2
satisfied, and for almost all time t € [ it holds that:

(Jpsdu0, 8", + (Jp(F7H (0 —dboy) - V)iy, 0")g, (JUfF_ Vo),
—<gf7<%v>mm+<ﬁsam%> +(Jo PV, =0 V" € Vg,

(T6s0rb0, 8" )a, = (Jp(F 7ty - V)ou, 6)a, + (JosousF ™", V™),
—(Jfo:8")a, + (Jppdiin, 6" )ey, — (Jps(F Mg - V)i, 6")g,

)¢

")

)a,

and 0;1,,(0) = ° are

w?

>

A (AT pp(F7IV i) 7T ng”w o, =0 Vo e Vg, o
(Jps (Ot — (F’ Wy - V)uw — D), 0" ),
+(J Py (Ority — (B Mdog - V)il — B), 6" ), = 0 Vo™ € Lg,
(i, 9°)g, — (v, Vi, ww)(2 =0 Vo" eV,
ps(Orts — By, ")y, + (auVidy, V'), =0 Vo € V],

I
o

(div(JE 1 o5), ¢)q, Vo € igf.

Where the transformed Cauchy stress tensor is defined by
of = —ﬁf I +ﬁfo(@?A}fF71 + FHT@@?)

Here, the value of Wy is determined from the fluid mesh motion model. Next, the stress tensor is
given by

1o/ . R PN
b= <F <2MSE5 Y tr(ES)I> BT, B, =3 (VﬁSF‘l + F—TvasT) .

where, \s and jis are Lamé parameters. Finally, for the wave propagation problem, the lin-
earized stress tensor is given by

1. . N e 1/ . L
e == (2uszs A tr(EwS)[> BT, Bu =5 (V1:Lu,;,,F*1 n F*Tva55> .

Here, |15 and N\ are the Lamé coefficients for the solid. The value of W, is determined from the
FSI problem.
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In the next step, the variational formulation is prescribed in an arbitrary fixed reference do-
main. Noteworthy, all the coupling conditions are satisfied in an accurate variational fashion on
the continuous level. Solving the eXFSI problem in a monolithic way, we avoid the difficulties
with the so-called added-mass effect. For the time discretization we employ the Rothe (horizon-
tal line) strategy. Here, the temporal discretization is performed by using the finite difference
scheme. Specifically, we use the one step-6 schemes, focusing on the shifted Crank-Nicolson
schemes. For the spatial discretization, we refer to a standard Galerkin finite element approach.
We use the finite element pair Q5 /P for the fluid flow. For the structural deformations and the
coupled wave propagation problems, we use the element (J)5. The nonlinear problem is solved
using a Newton-like method. The Jacobian is derived by the exact linearization. Thereby, we
ensure robustness, while opting for rapid convergence. The implementation is accomplished via
the software library package DOPELIB [21] (based on deal.ii [22]). Note, we refer to the
direct solver UMFPACK [23] for solution of the linear equation systems at each Newton step.

4 NUMERICAL TEST

The numerical tests presented here aim at mimicing the physical behaviour of the FSI-wave
propagaton system. Specifically, we aim at mimicing the damage identification system. For this,
we closely analyze the wave patterns as wave propagates through a solid domain in motion. We
consider the deformable elastic structure, part of which is immersed in fluid. Both parts of the
structure feature fluid detached inclusions. Importanly, for comparability, these two inclusions
are located symmetrically with respect to the source of the signal. This allows us to contrast
the wave propagation patterns in a structure in motion and the one that is steady (cf. Figure
1). For a reference, we also illustrate the case with static fluid case. The test cases share
the same geometric configuration and all feature the non-vanishing disc-shaped input signal.
Space-discretisation is done via one global refinement iteration. Accordingly, we refine the
geometrical structure into 66, 450 quadratic-mesh cells. Here each cell have 165 local degrees
of freedom (DoFs) for the eXFSI problem. The time discretisation is done by the well-known
shifted Crank-Nicolson scheme. To enhance quality of the numerical solution at a particular
time segment, we apply uniform time discretisation within a segment, which is different among
the segments. Specifically, we distinguish 3 time segments: /; = [0;2), I, = [2;2.01125), and
I3 = [2.01125;2.51125]. Each segment I,,, n = 1,2, 3, is discretised via segment-specific time
step k,. Here, k& = 0.2's, ky = 0.000125 s, and k3 = 0.05 s. The global tolerance is set to
1 x 1078; the relative tolerance for the Newton iteration is set to 1 x 10710,

4.1 Baseline configuration

The domain is illustrated in Figure 1, where the notations and subdomains are depicted. At
the geometric center (0; 0) of the solid plate, there is a non-vanishing disc-shaped piezoelectric
actuator fs(i*, t) with a radius 77, of 7.5 mm [5, 6, 8]. It is used for the purpose of the excitation
of a burst Lamb wave package. In particular, in our simulations, we refer to a five-cycle Lamb
wave package, which has two main displacement field components ., and ., in the plane.
Besides, we choose the upper right corner of the structure with (0.25,0.5) as a control point to
measure the deflections initiated by the FSI effect. We introduce three eXFSI test cases that are
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00y, (—0.25,0.5) (0.25,0.5) 0000

(0.05,0.3)
(-0.05,0.2)

R,
£:(0.0)
o, (0.05,-0.2)
(=0.05,-0.3)

(1.0,0.0)

0Dpase
(-0.5,-0.5) 0.5,-0.5)

Figure 1: The reference (initial) configuration for 2D eXFSI test model with a disc-shaped force
fsat (0,0).

treated with different inflow velocities (see Table-1).

Table 1: Parameter setting for the eXFSI test cases.

Parameter eXFSI-0 eXFSI-1 eXFSI-2
Structure model STVK STVK STVK
Pf [103 kgm 3] 1 1 1
ps [10% kgm ™3] 1 1 10
ve[1073 m2s™ 1 1 1 1

c [10° ms™1] 1 1 1
Vs 0.4 0.4 0.4
s [108 kgm=ts~2] 0.50 0.50 0.50
Unlms™| 0 0.2 1.0

4.2 Initial and boundary conditions

The boundary conditions are given by:

1. A constant parabolic inflow profile is prescribed at the left inlet as

dy(H — y)

v(0,y) = 1.5U,, P

3)

where U, 1s the mean inflow velocity and the maximum inflow velocity in 1.5U,,.
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2. At outlet, zero-stress 0.n = 0 is realized by using the ’do-nothing’ approach in the varia-
tional formulation. Along the upper and lower boundary, the usual 'no-slip’ condition is
used for the velocity. Bottom end of “_L” shaped solid is considered rigid.

We consider the following initial conditions for the FSI problem:
vp(0,y) =2ED -y <20,
vs(t;0,y) = )
v£(0,y), t> 2.0,

and the following initial conditions for the WpFSI problem:

) =0, iy, (,0) =0,
Dy, (£,0) = 0, Dy, (£,0) = 0,

~

U, (2,

(&)

4.3 Simulation results

(i)t =2.5ms (i) t = 6 ms (iii) t = 6.88 ms (iv)t = 7.25 ms
(a) Test case eXFSI-0.

O)t=0L+25ms (@()t=I0L+6ms (i)t=1 +688ms (iv)t=1 +7.25ms
(b) Test case eXFSI-1.

WOt=5L+35ms (@()t=1+125ms ((i)t=1»1+14ms (iv)t=1, +16.5ms
(c) Test case eXFSI-2.

Figure 2: The displacement field component #,, with fluid velocity field at different time.
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This test configuration comprises the baseline configuration extended by adding the two
liquid inclusions (subdomains). As illustrated in Figure 1, the two subdomains are located sym-
metrically with respect to the actuator. Importantly, one subdomain is located in the part of the
solid that is exposed to the fluid flow. The other subdomain — in the part of the solid, which
is not exposed. This setup allows us to contrast the effects of the same signal in a structure in
motion and in a fixed structure. The results for eXFSI-1 case are illustrated in Figure 2.

Figure 2 illustrates the numerical simulation results for the test case eXFSI-0, eXFSI-1 and
eXFSI-2. For each test case we present 4 time-snapshots, which allows for tracking the patterns
alterations. The reference case, eXFSI-0, depicts the case with no fluid flow i.e. U,, = 0.0
ms~! and thus structural deformations. This case mimics the performance of the off-live SHM
system. We observe symmetrical propagation of the wave, where the presence of the fluid in-
clusion is clearly identified. Nest, we move to the on-live SHM system (test case eXFSI-1).
Here, the fluid flow of velocity U,, = 0.02 ms~ ' deforms the solid structure, which, in turn,
squeezes the wave pattern. Both eXFSI-0 and eXFSI-1 feature the same material properties.
Next, we presents the results for alternative material and higher fluid velocity U,,, = 1.0 ms™*
(test case eXFSI-2). Again, we observe a solid deformation under the flow. As wave reaches the
liquid inclusion, it creates reflections. At the fluid-solid interface, the further reflections occur.
These are prominent compared to the case eXFSI-1. The differences come into play due to al-
ternative solid-to-fluid density ratio. The higher the ratio, the higher the wave amplitude in the
liquid subdomain. This numerical results are in line with the experimental data. For example,
in [19, 20] the ultrasonic wave propagation is tracked in a blade by means of image processing.
As a final note, the present research results should be considered as a numerical benchmark for
the SHM system.

S CONCLUDING REMARKS

In the present paper, we introduce the new state-of-the-art mathematical model that describes
the wave propagation through media in motion. Numerical solution demonstrates the ability of
the model to successfully identify the inclusion in the solid by tracking the wave patterns as
wave propagates. In this case, we use the inclusion to mimic the damage for the purpose of
demonstration. The real-life applications would require larger set of potential damage-inducing
materials to be tested. The set of materials differs across applications. In our model, this would
be translated in the alterations of the material properties calibration. Another important future
extensions include definition of changes associated with alternative structural (and environmen-
tal) characteristics and development of the noise detection function (NDF) that translates the
structural conditions into the output sensor data.
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