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Abstract. Composite materials are increasingly being introduced in automotive (e.g. BMW
i-project) and aeronautical (e.g. Airbus A350 and Boeing 787) applications. These applications
are exposed to loading conditions with various energies which result in a complex mechanical
response, that is vital to accurately predict. In this work, a constitutive model which takes into
account the viscous effects in the mechanical behaviour of a unidirectional carbon-epoxy sys-
tem is presented. This model at the ply scale is based on the very efficient transversely isotropic
elastic-plastic model proposed by Vogler et al. (Modeling the inelastic deformation and frac-
ture of polymer composites-Part I: Plasticity model), which can be calibrated for other fibre
reinforced polymers (FRPs). An excellent correlation between the measured and numerically
predicted stress-strain responses of the specimens was achieved for all specimen types and both
strain rate regimes.

1 INTRODUCTION

The number of applications in which FRPs are used in aeronautical and automotive struc-
tures is increasing quickly, and along with it comes the need to efficiently and precisely predict
the behaviour of these structures under various loading scenarios. Composite structures may be
subjected to high speed loading events and the numerical assessment of the dynamic material
response is therefore relevant for several loading scenarios. Some examples are bird, tire and
hail impact and crash events.
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Strain rate effects and non-linear stress-strain behaviour must be captured by advanced com-
posite material models to accurately predict the initiation and evolution of damage. It is there-
fore imperative to have appropriate material models.

The experimental data has been reported in [1] and [2] and describes the nonlinearities under
multi-axial loadings prior to the onset of cracking. The necessary data to calibrate the presented
model for the HexPly IM7-8552 material system is provided by these tests.

This work presents a new fully 3D transversely isotropic viscoelastic-viscoplastic constitu-
tive model. The proposed model is implemented as a VUMAT (user material subroutine using
an explicit formulation), in the Finite Element Analysis (FEA) commercial software package
Abaqus. The available tension and compression tests are simulated using this VUMAT. By
using the explicit capabilities of the Abaqus code, the strain-rate dependency of the global re-
sponse is very accurately captured.

2 CONSTITUTIVE MODEL

2.1 Transversely isotropic formulation

The constitutive model originally proposed by Vogler et al. [3], and further developed by
the authors is presented in this section. It represents a viscous extension to the original elastic-
plastic model. The small deformation theory is used to formulate the equations of the model.
Therefore, the following strain additive decomposition is assumed

ε = εve + εvp. (1)

where -ve- stands for “viscoelastic” and -vp- for “viscoplastic”, while ε represents the total
strains.

The use of structural tensors enables a formulation of the anisotropy free of any reference
coordinate system. Therefore, the material symmetries are viewed as an intrinsic material prop-
erty. The structural tensors constitute then an additional argument in the constitutive equations.
Finally, finite fibre rotations can be regarded easily thanks to this formulation. The structural
tensor A that represents the symmetry conditions of transversely isotropic materials is defined
by the dyadic product of the unit vector of the preferred (fibre) direction a

A = a⊗ a. (2)

Following the previous work reported in [3], the structural tensor is used as an additional
argument in order to formulate the elastic free energy density, the yield function and the plastic
potential formulation. In the proposed viscoelastic-viscoplastic extension, A is used in the
formulation of the viscoplastic creep function, the viscoplastic potential and the viscoelastic
model. The elastic free energy density for the proposed transversely isotropic model reads

Ψ(ε,A) :=
1

2
λ(trε)2 + µT (trε)2 + α(aεa)trε

+ 2(µL − µT )(aε2a) +
1

2
β(aεa)2,

(3)
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with the five elasticity constants λ, µT , µL, α, β as invariant coefficients.

The stress tensor σ and the elasticity tensor Ce can be obtained by computing the first and
the second derivatives of the free energy density with respect to the strain tensor, respectively

σ = ∂εΨ(ε,A) , Ce = ∂2εεΨ(ε,A). (4)

In the model formulation, a decomposition of the stress tensor is done. The stress tensor is
decomposed in three contributions as follows

σ = s+ pI + σfA, (5)

where s is the deviatoric part of the stress in the matrix, the pI term corresponds to the hy-
drostatic pressure in the matrix material component and the σfA term corresponds to the stress
projected in the fibre direction (fibre contribution). The scalars p and σf are determined by
imposing the following conditions

s : I = 0 and s : A = 0. (6)

These conditions correspond to a trace of the deviatoric part equal to zero and no contribution
of the fibre direction. They lead to the expression of p and σf

p =
1

2
(σ : I − σ : A),

σf =
1

2
(3 σ : A− σ : I). (7)

This decomposition will be used for the viscoplastic and viscoelastic formulation.

2.2 Viscoplastic formulation

Similarly to the plastic formulation, a decomposition of the stress state in “viscoplasticity in-
ducing” stresses and assumed “elastic reaction” stresses is used. The ‘viscoplasticity inducing”
part of the stresses has an influence on the viscoplastic behaviour (yield and plastic evolution),
and it is used further in the formulation of the plastic yield function. On the other side, the
“elastic reaction” part of the stresses plays no role in the plasticity (e.g. hydrostatic pressure in
the polymeric matrix).

σ = σe,reac + σvp,ind, (8)

where the ”elastic reaction” and ”viscoplasticity inducing” stresses are defined using Eq. 9

σe,reac = pI + σfA,

σvp,ind = σ − σe,reac = s. (9)

As can be seen, the elastic reaction stresses contain the hydrostatic pressure, and the stresses
in the fibre direction which are both assumed purely elastic. Therefore, the “viscoplasticity
inducing” stresses can be obtained directly from the total stresses using the fourth order tensor
Pvp,ind according to

3
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σvp,ind = Pvp,ind : σ, (10)

with

Pvp,ind = I− 1

2
I ⊗ I − 3

2
A⊗A+

1

2
(A⊗ I + I ⊗A). (11)

In this expression, I is the fourth order unit tensor defined such that Iijkl = δikδjl. The defined
stresses are then used to formulate the viscoplastic creep surface using the invariant theory. The
set of invariants that are used in the model are the following

I1 =
1

2
tr(σvp,ind)

2 − a (σvp,ind)
2 a,

I2 = a (σvp,ind)
2 a,

I3 = tr(σ) − a σvp,ind a. (12)

The corresponding transversely isotropic viscoplastic surface reads

f(σ, ε̇, ε̄vp,A) = α1I1 + α2I2 + α3I3 + α32I23 − 1 ≤ 0, (13)

where

α3 = αt
3 α32 = αt

32 if I3 > 0,

α3 = αc
3 α32 = αc

32 if I3 ≤ 0. (14)

The proposed viscoplastic creep function results in 6 viscoplastic creep parameters that have
to be determined. Each of these parameters and the corresponding invariants are related to the
following loading states: transverse shear, in-plane shear, uniaxial and biaxial transverse ten-
sion and uniaxial and biaxial transverse compression. Fig. 1 shows a schematic representation
of the transversely isotropic f surface in the stress space. The points represented in the curves
are the “trigger points” of the viscoplastic creep surface, for a given strain rate, in which the
viscoplastic process is controlled. That is, in each of these points, an initial yield stress and a
hardening curve giving the yield stress vs. the corresponding equivalent viscoplastic strain is
defined via tabulated data. Consequently, the viscoplastic creep surface parameters α(... ) are a
function not only of the strain rate [1], but also of the equivalent viscoplastic strain, see [3].
The evolution of the viscoplastic strain is defined by using a non-associative flow rule. Two

viscous parameters define the Perzyna type over stress model, m, and η. The consistency pa-
rameter γvp is to be determined using the flow rule. The flow rule reads

ε̇vp = γvpng =
〈f(σ, ε̇, ε̄vp,A)m〉

η
ng, (15)

where g(σ,A) is the function of the viscoplastic potential, which defined the non-associated
viscoplastic flow direction ng = ∂σg(σ,A), analogous to plasticity. The crucial difference in
the rate independent case is that now, stress states outside of the yield locus are admissible.
That is, the stresses can exceed the yield surface depending on the loading velocity and are not
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Figure 1: Schematic representation of the yield surface for UD composites in stress space (the yellow points are
repetitions of the blue ones because of the material symmetry).

supposed to remain on the yield locus during plastic loading. The viscosity parameter acts as
delay parameter. At t = tn+1 , the viscoplastic multiplier reads:

γn+1
vp =

〈fm(σn+1, ε̄n+1
vp ,A)〉

η
∆tn+1, (16)

with ∆tn+1 = tn+1−tn. The consistency condition, which has to be fulfilled in the viscoelastic-
viscoplastic case, reads

γn+1
vp

η

∆tn+1
= 〈fm(σn+1(γn+1

vp ))〉. (17)

This consistency condition Eq. (17) can be solved with the Newton-Raphson method to obtain
the value of the consistency parameter γn+1

vp . Then, the εn+1
vp can be updated at the end of the

current time step.

2.3 Viscoelastic formulation

The viscoelastic extension implemented is based on the model proposed by Kaliske in [4]. It
derives from a generalised Maxwell model as can be seen on Fig. 2. In this model, there is one
main branch made of one linear spring, the elastic modulus is C0 (the index of the branch is 0),
which is the original elastic modulus of the material (quasi-static property). There is another
branch in parallel. It is constituted of one Maxwell element, characterised by its elastic modulus
C1 and its relaxation time τ1 (the index of that branch is 1). The equations for the 1-dimension
rheological model are presented, before their generalisation for the fully 3D model. The total
stress in the viscoelastic branch can be decomposed

σ = σ0 + σ1, (18)

5
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Figure 2: Schematic representation of the generalized 1D viscoelastic Maxwell model.

The differential equation for the stress in the Maxwell element reads

Γ1 σ̇0 = σ̇1 +
1

τ1
σ1, (19)

with Γ1 = C1C
−1
0 .

The analytical solution reads

σ1(t) =

∫ t

0

Γ1 exp
(
− t− t∗

τ1

) ∂σ0
∂t∗

dt∗. (20)

In a reccurency scheme, at t = tn+1 and by assuming a linear evolution of the stress σ0
between tn+1 and tn (∆tn+1 = tn+1 − tn ), an approximation of the solution can be obtained

σn+1
1 ≈ exp(−∆tn+1/τ1)σ

n
1 + Γ1

1− exp(−∆tn+1/τ1)

∆tn+1/τ1
(σn+1

0 − σn
0 ). (21)

For the next sections, in order to simplify the expressions, the following notation are adopted,
for the step n+ 1

fn+1
1 = exp(−∆tn+1/τ1), and fn+1

2 =
1− exp(−∆tn+1/τ1)

∆tn+1/τ1
. (22)

Following Eq. 21, it is possible to fully determine the stresses at a given step using the previous
stresses (which must be saved). Only the stress in the branch 1 depends on the strain rate.

The same equations can be implemented for the 3D scenario. However, fourth order tensors
must be used instead of scalars (C0,C1, and �1 = C1 : C−1

0 ). The characteristic relaxation time
tensor T1 is chosen such that

T1 = τ1I. (23)

This choice simplifies the model formulation by using only one characteristic time parameter
for every direction. More experimental data is necessary to determine the relaxation times in
every direction. Poon and Ahmad have implemented in [5], a thorough relaxation time tensor
successfully , using similar relaxation times.

6
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Thefore, the system of equations is the following

σn+1
0 = σn

0 + C0 : δεn+1
0 ,

σn+1
1 = fn+1

1 σn
1 + fn+1

2 �1 : (σn+1
0 − σn

0 ) = σn
1 + fn+1

2 �1 : C0 : δεn+1
0 , (24)

σn+1 = σn+1
0 + σn+1

1 .

The viscoelastic prediction is now expressed in term of the predicted stress σpred,n+1 as

σpred,n+1 = σn
0 + fn+1

1 σn
1 + Cve : δεn+1, (25)

with

Cve = [I + fn+1
2 �1] : C0. (26)

The relaxation tensor � (Γ̂ using the Voigt notation) for a transverse isotropic material in the
material coordinate system (1 is the direction of the fibres) is

Γ̂ =


γ11 γ12 γ12 0 0 0
γ21 γ22 γ23 0 0 0
γ21 γ23 γ22 0 0 0
0 0 0 γ44 0 0
0 0 0 0 γ44 0
0 0 0 0 0 γ66

 . (27)

There are different methods to determine � in the correct coordinate system. One is to define
the independent parameters (maximum 7) of this fourth order tensor in the material coordinate
system, then transform it into a matrix form, rotate that matrix in the current coordinate system
and finally rewrite it as a fourth order tensor. This approach is complicated because all the
parameters must be calibrated and the rotation. Another approach might reduce the number of
parameters. It consists in using one single scalar, γve,1, which multiplies an order four tensor,
Pve,ind. This tensor, defined using the preferred direction vector a, is used to extract from the
stress/strain, the components that have an influence on the viscoelastic behaviour (e.g. shear
in the polymeric matrix), and remove the components which do not depend on the strain-rate
(e.g. stress in the elastic fibre). Therefore, it must be checked afterwards that using only one
parameter is accurate enough. Kaliske et al. have reported in [4] that the viscoelastic behaviour
is in many cases mainly linked to the isochoric part of the deformation, which excludes the
hydrostatic pressure contribution. In the presented model, the viscoelasticity is considered not
linked to the hydrostatic pressure in the polymeric matrix and neither to the fibres, where the
behaviour is assumed purely elastic. Consequently, the “viscoelasticity inducing” stresses is
defined (part of the stress that depends on the strain rate in the viscoelastic response), which is
exactly the same as the previously presented “viscoplasticity inducing” stresses (see Eq. 9).

σve,ind = Pve,ind : σ = Pvp,ind : σ. (28)

7
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Therefore, �1 can be expressed using Pve,ind

�1 = γve,1Pve,ind. (29)

This leads to the following expression of the viscoelastic stress σn+1
1

σn+1
1 = fn+1

1 σn
1 + fn+1

2 γve,1 Pve,ind : C0 : δεve (30)

With this approach, the number of parameters for this model is reduced. Moreover, the model
can easily be used for any orientation (using the preferred direction vector a ), as there is no
need to transform a fourth order tensor. The viscoelastic extension is fully determined using
only two scalar parameters, τ1 and γve,1.

3 Calibration of the viscous parameters

It is assumed that the viscous behaviour is independent of the hydrostatic pressure. Hence,
the strain rate dependency on the yielding behaviour and on the elastic behaviour is similar both
in tension and in compression.

3.1 Calibration of the viscoplastic model parameters

The calibration of the two viscoplastic parameters, m and η, introduced in Eq. (15) is dis-
cussed herein. For the current material, IM7-8552, just two strain rate regimes were tested.
Consequently, the parameter m is set to m = 1, and an approximately linear dependency of
the viscoplastic yield stress on the logarithmic strain rate can be modelled using the parameter
η. Although such a linear dependency from the logarithmic strain rate for carbon-epoxy is re-
ported by [6], it cannot be assumed for arbitrary matrix materials. Thermoplastics for instance,
or thermoplastic toughened resins, exhibit a nonlinear dependency on the logarithmic strain rate
[7]. To account for this nonlinear dependency, the parameterm of the viscoplastic model can be
used. Therefore, test data for at least 3 strain rate regimes are required to calibrate the parameter
m.

To calibrate the remaining viscoplastic parameter η, the axial stress-strain curves of the 45◦

off-axis compression tests are used. These tests were performed at two different strain rates, at
quasi-static rate (0.0004 s-1) and at an axial strain rate of approximately 280 s-1. The calibration
is first performed by running a single element test and then a more refined test using a fine mesh,
whereby the parameter η = 4.0 · 10−4 Ns/mm2 gives the best approximation.

3.2 Calibration of the viscoelastic model parameters

The calibration of the two viscoelastic parameters γve,1 and τ1 of the generalized Maxwell
model, introduced in Eq. 23 and 29, is done performing the 90◦ compression tests. Indeed,
under transverse solicitations, the response is rate-dependent and controlled by the matrix. Cur-
rently, it seems more obvious to calibrate the viscoelastic response caused by the matrix using
this case. The 45◦ tests are used to control the validity of the model under shear solicitations
but are less sensible to the value of γve,1 so they cannot be used independently. Approximated
values are obtained using a 1D calculation, and then refined using a finite elements simulation

8
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with a fine mesh, reproducing the experimental conditions. Only two strain-rate regimes are
available, therefore a great uncertainty for the value of τ1 exists. Indeed, no noticeable differ-
ence is observed for values in the range of 10−1 to 10−4 s. Therefore, τ1 is set to τ1 = 1 · 10−2 s
and the value γve,1 = 0.35 is found for the best approximation.

4 Results

The simulated results are obtained using the (FEA) commercial software Abaqus. The exper-
imental specimens are reproduced using three-dimensional, eight-node C3D8R solid elements
with reduced integration. For low strain rates simulations, the viscoelasticity transforms into
pure linear elasticity. Consequently, the element size effect on the results is very little. How-
ever, it is more important to refine the mesh under high strain rates because all areas in the
specimen do not necessarily deform at the same speed. For these reasons, the following results
have been obtained using a coarse mesh for the quasi-static simulations, and a very fine mesh
for the dynamic simulations (hourglass effect was invesigated and not detected). The simulated
cases are off-axis 15◦, 30◦, 45◦ and 90◦ transverse tension and off-axis 15◦, 30◦, 45◦, 60◦, 75◦

and 90◦ transverse compression.

On the following figures, the experimental and simulated axial strain-stress curves are plot-
ted. They are obtained for dynamic and quasi-static regimes for both tension and compression.
The dotted lines refer to the dynamic data, the continuous lines refer to the quasi-static data.
Also, the red colour is used for the simulation results, while the black colour is used for the
experimental results. Note that, the damage and the failure are not taken into account by the
presented model.

4.1 Tension results

The Figs. 3 to 6 show the measured and simulated static and dynamic axial stress-strain
curves under 15◦, 30◦, 45◦ off-axis tension and 90◦ transverse tension. Considering the exper-
imental data of the dynamic tests, it can be seen that with a higher strain rate the initial slope
increases. This means that viscous effects are observed in the elastic range and these must be
taken into account. Here, the model is able to provide an excellent prediction of these effects.
Also, the stress-strain curves become more linear under dynamic loading (See Figs. 3-6), ac-
cording to the viscoplastic behaviour of the material which is modelled here. In that respect,
the viscous effects noticed in both, elastic and plastic ranges, are very accurately predicted for
the four orientations, validating the model for tensile loadings.

4.2 Compression results

The Figs. 7 to 12 show the measured and predicted axial stress-strain curves for 15◦, 30◦,
45◦, 60◦, 75◦ off-axis compression and 90◦ transverse compression under quasi-static and dy-
namic loadings. As can be observed, a very good prediction of the nonlinear behaviour has been
achieved for both, quasi-static and dynamic loading cases. For compression loadings as well as

9
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Figure 3: Axial stress-strain curves for the tensile tests
and simulations, 15 degree, viscoelastic-viscoplastic
model.
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Figure 4: Axial stress-strain curves for the tensile tests
and simulations, 30 degree, viscoelastic-viscoplastic
model.
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Figure 5: Axial stress-strain curves for the tensile tests
and simulations, 45 degree, viscoelastic-viscoplastic
model.
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Figure 6: Axial stress-strain curves for the tensile tests
and simulations, 90 degree, viscoelastic-viscoplastic
model.

tensile loadings, the viscous effects are well taken into account by the presented model. Never-
theless, it is to be noted that for the 15◦, 30◦, 45◦ off-axis dynamic compression, the quadratic
evolution in the plasticity domain cannot be reproduced completely using the presented model.
A more thorough viscoplastic model, including the damage, could improve the predictions for
those low angle specimens.

5 CONCLUSIONS

In this paper, a fully 3D viscoelastic-viscoplastic material model at the ply scale, is presented.
It is currently written in a infinitesimal strain formulation and is implemented in a VUMAT
for the (FEA) commercial software Abaqus. By using the preferred direction vector in the
formulation, challenges with defining the proper orientation system are avoided. Consequently,
the model can be used with any orientation. Due to the viscous extension, the prediction of
the stresses state in a specimen is accurate for high strain rate regimes, which is very important

10



P.-W. GERBAUD 1,2, F. OTERO2,3, P. BUSSETTA2, P. P. CAMANHO 2,4

0 0.5 1 1.5
 [%]

0

100

200

300

400

500

600

 [M
P

a]

IM7 8552 off-axis compression 15 degree

Figure 7: Axial stress-strain for the compression tests
and simulations, 15 degree, viscoelastic-viscoplastic
model.
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Figure 8: Axial stress-strain curves for the compres-
sion tests and simulations, 30 degree, viscoelastic-
viscoplastic model.
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Figure 9: Axial stress-strain curves for the compres-
sion tests and simulations, 45 degree, viscoelastic-
viscoplastic model.
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Figure 10: Axial stress-strain curves for the com-
pression tests and simulations, 60 degree, viscoelastic-
viscoplastic model.

for this field of research. Furthermore, its low number of viscous parameters makes it quick to
calibrate. The model is able to predict nonlinearities under multi-axial loading conditions prior
to the onset of cracking. The necessity to capture the viscous effects in the elastic range was
also shown. Of further importance is the development of a strain rate dependent damage model
taking into account the dynamic fracture toughnesses.
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Figure 11: Axial stress-strain curves for the com-
pression tests and simulations, 75 degree, viscoelastic-
viscoplastic model.
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Figure 12: Axial stress-strain curves for the com-
pression tests and simulations, 90 degree, viscoelastic-
viscoplastic model.
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