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Abstract. Adaptive time-step algorithms can improve considerably the effectiveness of
unsteady flow computations. Several adaptive time-step strategies are available in the
literature but in all cases conservative time-step choices (small time steps) lead to a large
number of time integration steps, while aggressive time-step choices (large time steps)
lead to a large number of rejected time integration steps, and in both cases the efficiency
and/or robustness of the adaptive strategy may be far from optimal. An appropriate
adaptive strategy should instead guarantee both robustness (small-number of rejected
time integration steps) and efficiency (small-number of time-integration steps for a given
accuracy).

In this work several adaptive time-step strategies have been adopted for the numerical
solution of the unsteady incompressible Navier-Stokes and Reynolds-Averaged Navier-
Stokes equations based on a high-order accurate discontinuous Galerkin space discretiza-
tion. Three different classes of time integration methods have been considered, the lin-
early implicit Rosenbrock-type Runge-Kutta schemes [2], linearly implicit Rosenbrock-
type two-step peer schemes [3] and ESDIRK schemes [2]. In oder to assess the adaptive
time-step methods for both autonomous and non-autonomous (time-dependent boundary
conditions) DAE systems of increasing stiffness, we will present the results obtained in
the comuptation of unsteady laminar and turbulent flows around a circular cylinder at
increasing Reynolds numbers ranging from Re = 100 to Re = 3900.

1 INTRODUCTION

Discontinuous Galerkin (DG) methods have been emerging as one of the most promising
approaches to high-fidelity fluid dynamics computations in many technical areas, including
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aeronautics, aeroacoustics and turbomachinery [1]. These kind of simulations usually
involve the computation of unsteady flows characterized by a wide range of spatial and
temporal scales over (very) long time periods and therefore require efficient, robust and
accurate time integration methods.

Standard implicit time integration schemes have been extensively investigated for the
solution of the compressible Navier-Stokes equations. Very limited information is instead
available on adaptive time step strategies, either for the solution of systems of differential
algebraic equations (DAE) such as the incompressible Navier-Stokes equations and for the
stiff systems resulting from the discretization of the unsteady Reynolds Average Navier-
Stokes equations (URANS) [2].

To cover this gap, this work focuses on the performance of several Runge-Kutta schemes
of order of accuracy ranging from three to six — namely linearly implicit one-step Rosen-
brock methods, Rosenbrock two-step “peer” schemes, and ESDIRK schemes [3] — as time
integrators of the high-order DG space discretization of the incompressible Navier-Stokes
(INS) and incompressible Reynolds averaged Navier-Stokes (URANS) equations coupled
with the k-ω̃ turbulence model [7]. The robustness and efficiency of the time integration
schemes is augmented by an adaptive time-step strategy based on a local error estimator
which exploits the local truncation error of the time integration scheme and of its lower
order embedded scheme.

The paper is organized as follows. Section 2 describes the adaptive time-step algo-
rithm with an overview of the most popular error estimators and controllers available
in the literature. Section 3 presents the comparison of the different adaptive time inte-
gration strategies for autonomous and non-autonomous problems, namely the unsteady
laminar and turbulent flow around a circular cylinder at different Reynolds numbers rang-
ing from Re = 100 to Re = 3900. Section 4 summarizes the main findings and gives some
indications for future developments of this work.

2 ADAPTIVE TIME-STEP STRATEGY

Automatic step-size control is an important feature for the efficiency and robustness
of time integration schemes. Fixed time steps typically results in a large number of
small steps, leading to large simulation costs. Adaptively variable time step can instead
substantially improve the simulation effectiveness by (i) reducing the number of time
steps — and therefore minimizing the computational effort — required to achieve a user-
defined accuracy level and by (( ii)) improving the robustness of the computation as a
result of lower local truncation error values during the time integration process.

Following the idea put forward by Söderlind and Wang [8], three different “error types”
are needed for an adaptive time integration strategy:

• Global error at time tn+1, defined as the difference between the exact u(tn+1) and
the numerical un+1 solution

errn+1 = ‖u(tn+1)− un+1‖, (1)

where ‖ · ‖ denotes some user defined norm;
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• Local Truncation Error (LTE), i.e. the numerical error introduced by the scheme in
a single time step

LTEn+1 = ‖u(tn+1)− un+1
? ‖, (2)

where un+1
? is the approximate solution obtained by applying one step of the con-

sidered scheme starting from the exact solution u(tn);

• Local estimator, defined in terms of the solution û of the so called “embedded
scheme”,

rn+1 = ‖un+1 − ûn+1‖. (3)

Each quantity can be represented by means of the asymptotic model

errn+1 = ψn+1
g (∆t)qg , (4)

LTEn+1 = ψn+1
l (∆tn)ql , (5)

rn+1 = ψn+1
r (∆tn)qr , (6)

where ψg, ψl, ψr are the estimator constants, qg, ql, qr are the estimator order of conver-
gence, ∆tn ≡ tn+1 − tn, and ∆t is the arithmetic mean of the step sizes used during the
integration in time, i.e.

∆t =
1

N

N∑
k=1

∆tk−1, (7)

with N the number of steps performed up to time tn+1.
The adaptive time-step strategy consists in choosing the step-size ∆t so as to obtain a

constant LTE during the time integration. However the LTE error cannot be computed
when the analytic solution is unavailable and is therefore apprtoximated as LTEn+1 ≈
rn+1. Since LTE depends only (approximately) on r, the adaptive integration strategy
chooses ∆t in order to keep r equal to a constant value during the time integration.

In practice, the standard adaptive time-step algorithm [8, 9] requires at each time step
that

LTEn+1 ≈ rn+1 < µTOL, (8)

where TOL is a user-defined adaptive tolerance and µ = {3/2, 2} is a user-defined safety
factor. If this condition is verified the solution un+1 is accepted, and the next step-size
∆tn+1 is computed using Eq. (6) with rn+2 = TOL, thus obtaining

∆tn+1 =

(
rn+2

ψn+2
r

) 1
qr

=

(
TOL

ψn+2
r

) 1
qr

. (9)

Otherwise un+1 is rejected, and the step is repeated with a smaller ∆tn given by

∆tn =

(
TOL

ψn+1
r

) 1
qr

, (10)
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where the constant ψn+1
r is obtained from the current local estimator rn+1 and the rejected

time-step ∆t
n
, i.e. as

ψn+1
r =

rn+1(
∆t

n)qr . (11)

The only unknown quantity in the above relations is the estimator constant ψn+2
r appear-

ing in Eq. (9), which must be therefore effectively predicted by interpolation of the ψ
values available at previous time steps. In practice, introducing the logarithmic variable
ψ̃ = ln (ψ), the interpolation can be written as

ψ̃n+2
r ≈

z∑
j=1

αjψ̃
n+2−j
T +

z∑
j=1

βjψ̃
n+2−j
r , (12)

thus obtaining

ψn+2
r =

z∏
j=1

(
ψn+2−j
T

)αj

z∏
j=1

(
ψn+2−j
r

)βj , (13)

where z is the number of past values used, αj, βj are real coefficients and

ψn+2−j
T =

TOL

∆tn+1−j , j = 1, . . . , z. (14)

Notice that, due to the logarithmic variables, the predicted estimator constant is always
positive regardless of the αj and βj values. By combining Eq. (13) and Eq.(9), and by
considering different sets of αj and βj coefficients, the following so called proportional-
integral (PI) controllers for the computation of ∆tn+1 are obtained

∆tn+1 = ∆tn
(
TOL

rn+1

) 1
qr

, (15)

∆tn+1 = ∆tn
(

∆tn

∆tn−1

)(
TOLrn

rn+1rn+1

) 1
qr

, (16)

∆tn+1 = ∆tn
(
TOL

rn+1

) 3
5qr
(

rn

TOL

) 1
5qr

, (17)

∆tn+1 = ∆tn
(

∆tn

∆tn−1

)− 1
4
(
TOL

rn+1

) 1
4qr
(
TOL

rn

) 1
4qr

, (18)

∆tn+1 = ∆tn
(

∆tn

∆tn−1

)− 3
8
(

∆tn−1

∆tn−2

)− 1
8
(
TOL

rn+1

) 1
8qr
(
TOL

rn

) 1
4qr
(
TOL

rn−1

) 1
8qr

. (19)

The above controllers (15)–(19) are named standard [10], standard+ [5], PI.4.2 [11],
H211b [9] and H312b [9], respectively. The coefficients αj and βj used in the above
controllers are reported in Table 1.

4



G. Noventa, F.C. Massa, S. Rebay, A. Colombo, F. Bassi and A. Ghidoni

Table 1: Real coefficients αj and βj of the formulation (13) for each adaptive time-step controller used
in this work. Note that the consistency condition

∑z
j=1 αj + βj = 1 is always verified.

z α1 α2 α3 β1 β2 β3
standard 1 0 - - 1 - -
standard+ 2 0 0 - 2 −1 -
PI.4.2 2 2/5 1/5 - 3/5 −1/5 -
H211b 2 2/4 0 - 1/4 1/4 -
H312b 3 4/8 0 0 1/8 2/8 1/8

Following the idea of Söderlind and Wang [8], the robustness and the efficiency of
the adaptive algorithm is substantially improved by limiting the maximum possible in-
crease/reduction of the ∆t value by means of the smooth limiter function

∆tn+1
l = ∆tn

[
1 + κ arctan

(
∆tn+1 −∆tn

κ∆tn

)]
, (20)

where ∆tn+1
l denotes the limited step-size value used during the next time step. The value

of the parameter κ appearing in Eq. (20) must be set in the range [0.7, 2]. In this work
the effects of the smooth limiter function have been analysed with the H221b controller
using κ = 1.

The target of an adaptive time stepping procedure is to control the global error of the
computation, while the parameter that drives the previously described adaptive procedure
is the tolerance TOL. It is however possible to devise a procedure so that the tolerance
TOL becomes in fact equal to the required global error. This requires an appropriate cali-
bration, see e.g. Söderlind and Wang [8], that must be performed for any time integration
shemes before the actual computation.

3 NUMERICAL RESULTS

All the computations have been run on a Linux cluster with 12 AMD 6220 CPUs (8
cores per CPU). The computing time tCPU is reported in the tables as a normalized value
with respect to the TauBenchmark [12] value, tTauBench, obtained on a full node of the
cluster used for the CFD simulation1. The normalized computing time is measured as
work units defined as wu = (tCPUncores)/tTauBench, where tCPU is the wall clock time and
ncores the numbers of cores.

Different estimators can be built by considering different variables as error indicators.
We here consider (i) the estimator of the x−component of the velocity field, (ii) the RMS
of the velocity components estimators, (iii) the arithmetic mean value of all the unknowns
and (iv) the RMS of the estimators all of the unknowns.

3.1 LAMINAR FLOW AROUND A CIRCULAR CYLINDER

The laminar flow around a circular cylinder for a Reynolds number Re = 100, based
on the cylinder diameter and the freestream quantities, is here considered. The mesh

1-n 250000 -s 10 define the reference TauBench workload for the hardware benchmark.
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Figure 1: Cylinder Re = 100. L2 norm of the pressure error (‖errp‖2) as a function of the clock time
with different error estimators (left) and controllers (right), ROS3PL scheme with tolsystem = 10−14 and
P5 solution approximation
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Figure 2: Cylinder Re = 100. Time-step ∆t evolution with different controllers, ROS3PL scheme with
TOL = 10−3, tolsystem = 10−14 and P5 solution approximation

has 5103 hybrid elements, triangles and quadrilaterals, with quadratic edges and it has
been generated with a 2D high-order version of a fully automated in-house hybrid mesh
generator based on the Advancing-Delaunay strategy, a P5 solution approximation has
been used.

All computations have the same initial flow field, created starting from a P1 steady
computation and advancing in time from P1 to P5, simulating three shedding for each
polynomial degree and using RODASP scheme with the following parameters for the
adaptive time-step strategy: TOL = 10−6, tolsystem = 10−14. The results are compared
with respect to a reference solution (pref ) obtained with ROD5 1 scheme for a simulation
time equal to ∆tsim = 16T , where T is the vortex shedding period, and with the following
parameters: ∆t = T/1632, tolsystem = 10−14 without the adaptive time-step strategy.

First, the influence of the error estimators and the controllers has been investigated,
Fig. 1 shows the performance of different error estimator and controllers with ROS3PL
scheme, in terms of the norm of the pressure error as a function of the clock time. While
Fig. 2 shows the evolution of the adaptive time-step ∆t with TOL = 10−3.

With velocity magnitude error estimator and H211b controller the performance of the
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Figure 3: Cylinder Re = 100. L2 norm of the pressure error (‖errp‖2) as a function of the adaptive
tolerance TOL (left) and the clock time (right) after the tolerance calibration procedure, tolsystem =
ηTOL, tolGMRES = 10−2 for ESDIRK46 scheme and P5 solution approximation

schemes has been investigated, Fig. 3 shows the L2 norm of the pressure error as a function
of the adaptive tolerance TOL and the clock time after the calibration procedure. For
‖errp‖2 < 10−3 peer6 scheme is the most efficient, reducing the computational time up to
46% with respect to ROD5 1, at ‖errp‖2 ∼ 10−6, while for a higher error ROD5 1 scheme
shows similar performance.

3.2 LAMINAR FLOW AROUND A ROTATING CIRCULAR CYLINDER

The influence of time-dependent boundary conditions has been investigated in the case
of the laminar circular cylinder. A rotating cylinder has been considered with the same
Reynolds number and a speed ratio α = ωr/v∞ = 0.5, where ω is the rotating velocity,
v∞ the far velocity and r the radius of the cylinder. The governing equations formulated
in the non-inertial reference frame [2] have been adopted to take into account the rotation
without moving the mesh.

Fig. 4 shows the performance of different error estimators and controllers with ROS3PL
scheme, in terms of the norm of the pressure error as a function of the clock time. While
Fig. 2 shows the evolution of the adaptive time-step ∆t with TOL = 10−3, where are
different behaviour of the controllers in terms of oscillations. In these laminar testcases
each controller and error estimators guarantees the same robustness and performance,
except standard+ controller, without any difference between first-, second- and third-
order of controllers.

With velocity magnitude error estimator and H211b controller the performance of the
schemes has been investigated, Fig. 6 shows the L2 norm of the pressure error as a function
of the adaptive tolerance TOL and the clock-time after the tolerance calibration proce-
dure. peer6 scheme is always better than other schemes, showing comparable performance
with ROD5 1 only for high error levels, ‖errp‖2 ∼ 10−2, and guarantees a computational
saving up to 59% at ‖errp‖2 ∼ 10−5.
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Figure 4: Cylinder Re = 100 with bc(t). L2 norm of the pressure error (‖errp‖2) as a function of the clock
time with different error estimators (left) and controllers (right), ROS3PL scheme with tolsystem = 10−14

and P5 solution approximation
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Figure 5: Cylinder Re = 100 with bc(t). Time-step ∆t evolution with different controller, ROS3PL
scheme with TOL = 10−3, tolsystem = 10−14 and P5 solution approximation
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Figure 6: Cylinder Re = 100 with bc(t). L2 norm of the pressure error (‖errp‖2) as a function of
the adaptive tolerances TOL (left) and the clock time (right) after the tolerance calibration procedure,
tolsystem = ηTOL, tolGMRES = 10−2 for ESDIRK46 scheme and P5 solution approximation
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Figure 7: Cylinder Re = 3900. L2 norm of the pressure error (‖errp‖2) as a function of the time-step
∆t (left) and the clock time (right) with different controllers, ROS3PL scheme with tolsystem = 10−14

and P5 solution approximation

3.3 TURBULENT FLOW AROUND A CIRCULAR CYLINDER

We next consider the turbulent flow around a circular cylinder for a Reynolds number
Re = 3900, based on the cylinder diameter and the freestream quantities. The mesh
has 4037 hybrid elements, triangles and quadrilaterals, with quadratic edges and it has
been generated with a 2D high-order version of a fully automated in-house hybrid mesh
generator based on the Advancing-Delaunay strategy, a P5 solution approximation has
been considered.

All computations have the same initial flow field, created starting from a P1 steady
computation and advancing in time from P1 to P5, simulating one shedding for each
polynomial degree and using RODASP scheme with the following parameters for the
adaptive time-step strategy: TOL = 10−6, tolsystem = 10−14. The results are compared
with respect to a reference solution (pref ) obtained with ROD5 1 scheme for a simulation
time equal to ∆tsim = T , where T is the vortex shedding period, and with the following
parameters: ∆t = T/1632, tolsystem = 10−14 without the adaptive time-step strategy.

For turbulent flows all the variables must be under control by the error estimator, i.e.
the estimators based on the x−component of the velocity and on the velocity magnitude
can’t be used, while the average error estimator can’t guaranteed robustness in the toler-
ance range 10−3 < ‖errp‖2 < 10−6. For these reasons the RMS error estimator is the only
used, where also the turbulence model variables k and ω̃ must be taken into account.

Fig. 7 shows the performance of the different controller with ROS3PL scheme, in terms
of the norm of the pressure error as a function of the time-step ∆t and the clock time.
While Fig. 8 shows the evolution of the adaptive time-step ∆t and the error estimator
rn+1 with TOL = 10−5.

With H211b controller the performance of the schemes has been investigated, Fig. 9
shows the L2 norm of the pressure error as a function of the adaptive tolerance TOL
and the clock time after the tolerance calibration procedure. For ‖errp‖2 < 10−5 peer5
scheme is the most efficient, reducing the computational time up to 30% with respect to
RODASP, which is the best scheme for lower accuracy (‖errp‖2 > 10−5).
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Figure 8: Cylinder Re = 3900. Time-step ∆t evolution with different controller, ROS3PL scheme with
TOL = 10−5, tolsystem = 10−14 and P5 solution approximation
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Figure 9: Cylinder Re = 3900. L2 norm of the pressure error as a function of the adaptive tolerances
TOL (left) and the clock time (right) after the tolerance calibration procedure, tolsystem = ηTOL,
tolGMRES = 10−2 for ESDIRK46 scheme and P5 solution approximation

4 CONCLUSIONS

In this work a high-order accurate discontinuous Galerkin space discretization coupled
with an adaptive time integration algorithm is investigated for the numerical simulation
of the incompressible Navier-Stokes and RANS equations with k − ω turbulence model
closure. Three different classes of time integration methods have been considered: the
linearly implicit Rosenbrock-type Runge-Kutta schemes, the linearly implicit Rosenbrock-
type two-step peer schemes and the ESDIRK schemes.

Traditional controllers and error estimators for adaptive strategies available in the
literature have been compared in terms of robustness, accuracy and computational effi-
ciency on several testcases. Autonomous and non-autonomous problems, i.e. problems
with time-dependent boundary conditions, have been considered: the unsteady laminar
and turbulent flow around a circular cylinder at different Reynolds numbers ranging from
Re = 100 to Re = 3900.

For the considered laminar testcases, the different adaptive strategies displayed similar
accuracies and computational efficiencies, for the first-, second- and third-order controllers
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(with the only exception of the standard+ controller). Notice however that for the tur-
bulent test case the error estimator must be based on all the variables. Peer schemes
outperform the one-step traditional methods for almost every level of accuracy. As an
example, in the cylinder testcase peer5 shows a computational saving up to ∼ 40% with
respect to ROD5 1. Moreover, the peer4 scheme performs similarly to the higher-order
accurate RODASP scheme, as peer5 does in comparison to ROD5 1. The lower order
schemes, ROS3PL and peer3, show the worst performance due to the lower time-step
that introduces an high number of rejected time-step.

Work is in progress to extend the comparison of the performance of the adaptive
strategies to other incompressible turbulent test cases, possibly considering problems of
industrial relevance, such as the turbulent flow around a circular cylinder at Re = 1.4×105

and the turbulent flow through a wind turbine.
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