
6th European Conference on Computational Mechanics (ECCM 6)
7th European Conference on Computational Fluid Dynamics (ECFD 7)

11-15 June 2018, Glasgow, UK

EFFECT OF HUMPS AND INDENTATIONS ON
BOUNDARY-LAYER TRANSITION OF COMPRESSIBLE

FLOWS USING THE AHLNS METHODOLOGY

J. A. Franco1, S. Hein2 and E. Valero3

1 German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology,
37073 Goettingen, Germany, Juan.Franco@dlr.de

2 German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology,
37073 Goettingen, Germany, Stefan.Hein@dlr.de
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Abstract. The presence of surface irregularities like humps or indentations can cause
regions of localized strong streamwise gradients in the basic flow quantities. These large
gradients can significantly modify the linear mechanisms that lead to laminar-turbulent
transition in wall-bounded flows (e.g. Tollmien-Schlichting waves). Standard methodolo-
gies like LST (Local Stability Theory) or PSE (Parabolized Stability Equations) can be
applied in regions far from the surface irregularities where the streamwise variations are
small. However, their formulations are not suited for handling the presence of such large
streamwise gradients.

The Adaptive Harmonic Linearized Navier-Stokes (AHLNS) equations can handle these
large streamwise gradients by using a fully-elliptic system of equations as in DNS (Direct
Numerical Simulation). Moreover, as in PSE a wave-like character of the instabilities
is assumed, leading to a significant reduction in the number of streamwise grid points
required compared with DNS computations.

In the present study, smooth humps/indentations with height/depth comparable with
the local boundary-layer displacement thickness are investigated. The effect of the
hump/indentation on the spatial evolution of convective instabilities, in terms of N-factors,
is presented. It is shown that the shape of the surface irregularity plays an important role
in the growth of convective instabilities.

1 INTRODUCTION

Local stability theory (LST) and parabolized stability equations (PSE) equations have
been successfully applied to study the development of convective instabilities (e.g. Tollmien-
Schlichting (TS) waves) in boundary-layer flows and, based on the eN methodology, to
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provide a reasonable transition location. However, the presence of surface irregularities
such as steps, humps, gaps, etc. may interact with the incoming disturbance in such a
way that neither of these methodologies is able to reproduce the growth of the instabilities
correctly. In the PSE approach it is assumed that the streamwise variation of the laminar
basic flow and of the disturbance properties are small over the characteristic wavelength of
the instability mode. In the LST method such streamwise gradients are neglected at all.
However, the presence of the surface irregularities can cause regions of localized strong
streamwise flow gradients.

The Adaptive Harmonic Linearized Navier-Stokes (AHLNS) formulation used here is
derived from the PSE approach by removing the assumption in PSE of a ’slowly varying
flow in streamwise direction’. This assumption is abandoned by recovering all terms
dropped in the original PSE formulation excluded during the parabolization process.
As opposed to the PSE formulation, in the AHLNS formulation there is no restriction
regarding all streamwise variations of geometry, mean flow and disturbance flow. PSE
is solved by a marching procedure. However, some remaining ellipticity in the equations
restricts the minimum step size. In the AHLNS approach, no marching procedure is used
to solve the governing equations. This allows the use of an arbitrarily fine grid in regions
of strong streamwise flow gradients.

The effect of humps/indentations in the laminar-turbulent transition process have been
extensively studied in the literature. Nenni & Guyas [8] focused on finding a critical
height/depth. Woerner et al. [9] studied the influence of the height and width of rect-
angular humps for an incompressible flow. They concluded that the height of the hump
was the most important geometrical parameter in terms of amplification of TS waves. A
similar conclusion was provided by Franco & Hein [2] when they investigated rectangular
humps based on the set-up of Dovgal et al. [10]. A study considering smooth humps was
done by Park & Park [11] using PSE. However, the hump heights analyzed in their work
were relatively small compared with the local boundary-layer displacement thickness δ1.
Garicano et al. [1] examined several indentations with depths comparable to δ1 using a
biglobal temporal approach. In the present paper, we are interested in the study of the ef-
fect of the shape of humps/indentations on the spatial evolution of convective instabilities
in the compressible regime when the height/depth of the hump/indentation is comparable
to δ1.

2 AHLNS EQUATIONS

Here, a brief introduction to the Adaptive Harmonic Linearized Navier Stokes (AHLNS)
equations is given. For a detailed description of the methodology, the readers are referred
to Franco & Hein [2] and Guo et al. [3].

2.1 Governing equations

The AHLNS equations are obtained from the compressible Navier-Stokes (NS) equa-
tions linearized for small disturbances. All flow and material quantities are decomposed
into a steady basic flow q̄ plus an unsteady disturbance flow component q̃, i.e.
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q(x, t) = q̄(x) + εq̃(x, t), ε� 1, (1)

where x, y and z are the streamwise, spanwise and normal coordinate components of the
position vector x. Here, t represents time. This flow decomposition is introduced into
the NS equations, then the basic state solution is subtracted and products of disturbance
quantities are neglected. To further simplify the analysis, it is assumed that the basic
flow is independent of the y coordinate, while the disturbance flow is periodic in the
y-coordinate, i.e. the analysis is restricted to quasi-three dimensional flows. The adaptive
approach proposed by Guo et al. [3] is introduced here: the disturbance flow variables are
divided into an amplitude function and an oscillating or wave function, i.e.

q̃(x, y, z, t) = q̂(x, z)eiΘ, (2)

where the wave function is defined as

Θ =

∫
α(x)dx+ βy − ωt. (3)

The physical disturbance is recovered from the real part of q̃. Once these assumptions
are introduced into the NS equations, the AHLNS equations are obtained. They can be
written in matrix form

Aq̂ + B
∂q̂

∂z
+ C

∂2q̂

(∂z)2
+ D

∂q̂

∂x
+ E

∂2q̂

∂x∂z
+ F

∂2q̂

(∂x)2
= 0, (4)

where q̂ = (ρ̂, û, v̂, ŵ, T̂ )>. Here, ρ and T stand for density and temperature, while u,
v, w are the streamwise, spanwise and normal components of the velocity vector u. The
coefficients A − F are 5 × 5 matrices, which contain basic flow quantities, real-valued
parameters β and ω, and the complex-valued wavenumber α. The disturbance field is
subjected to the following boundary conditions

û = v̂ = ŵ = T̂ = 0 at z = 0 (5)

û = v̂ = ŵ = T̂ = ρ̂→ 0 as z →∞.

Once the boundary conditions are incorporated into the system of equations, Eqn. (4),
and after discretization, a system of linear algebraic equations of the form Lq̂ = b is
reached, where vector b collects the information of the inflow boundary condition.

In the adaptive approach, similar to the PSE approach, a first result for q̂ is obtained
for a given initial distribution of α(x). Then a new distribution of α(x) can be computed
from the solution that minimizes the streamwise variation of q̂. This new α(x) is again
used to compute a new solution. The process is repeated until the solution converges.
This iterative process is driven by a normalization condition already used in PSE:

αnew = αold − i

∫∞
0

(
û† ∂û

∂x
+ v̂† ∂v̂

∂x
+ ŵ† ∂ŵ

∂x
+ T̂ † ∂T̂

∂x
+ ρ̂† ∂ρ̂

∂x

)
dz∫∞

0

(
||û||2 + ||v̂||2 + ||ŵ||2 + ||T̂ ||2 + ||ρ̂||2

)
dz
, (6)
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Figure 1: Sketch of the multi-zonal technique for boundary-layer instability analysis in the presence of
surface irregularities. The vertical dashed lines represent the inflow and outflow locations for AHLNS
computations. Magnitude q holds for both basic flow quantities q̄ and amplitude function of the distur-
bances q̂. Flow direction is from left to right.

with superscript † referring to the complex conjugate. This normalization condition min-
imizes the streamwise variation of the amplitude functions q̂. Therefore, the number of
grid points in streamwise direction can often be reduced considerably compared with DNS.
This is the basic idea behind the solution-adaptive scheme. A more detailed description
of this iterative process can be found in the work of Franco & Hein [2] or Guo et al. [3].

2.2 Multi-zonal approach

Figure 1 illustrates a typical example of a wall-bounded flow with a local surface
irregularity (in this case, the presence of a rectangular hump on a flat plate) and indicates
where AHLNS is applied in a multi-zonal approach. Relatively far away from the surface
irregularity, the streamwise variations of the laminar basic flow ∂q̄

∂x
and amplitude functions

∂q̂
∂x

are still relatively small and the assumptions made for PSE are valid. However, in the
vicinity of the surface irregularity the streamwise gradients may be of the same order as
the wall-normal gradients, and AHLNS is applied. At the inflow location of the AHLNS
zone, the amplitude functions provided by PSE are taken as inflow boundary condition for
AHLNS. At the outflow location of the AHLNS zone, the amplitude functions provided by
AHLNS can be used as initial condition for a subsequent PSE computation. The inflow
and outflow boundaries of the AHLNS domain are placed where the assumption of a slow
streamwise variation of the laminar basic flow and of the amplitude functions is valid.

2.3 Growth rate and N-factor envelope

The physical growth rate σ of an arbitrary disturbance quantity ξ is defined as

σξ = −αi +Real

(
1

ξ

∂ξ

∂x

)
, (7)

where the first r.h.s term is the contribution of the exponential part of the disturbance.
The second term is the correction due to changes of the amplitude function. In the present
paper, ξ is taken to be the streamwise velocity component û at the normal location where
û reaches its maximum value. The n-factor, which measures the accumulated growth of
the disturbances, is computed as
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n =

∫ x

xs

σûdx, (8)

where xs denotes the streamwise position where the disturbance starts to grow. Each
n-factor curve is computed for a single frequency f . The envelope of these curves is called
the N -factor envelope, following the definition given by Arnal [4].

3 RESULTS

3.1 Basic flow computations

The laminar steady two-dimensional flow on a flat plate in the presence of a
hump/indentation has been computed numerically. The compressible Navier-Stokes (NS)
solver TAU [5], developed at DLR, was used. Grids were generated using the structured
grid generator MEGACADS, also developed at DLR. All geometrical parameters have
been nondimensionalized using the incompressible boundary-layer displacement thickness
δ∗ at a certain x∗0 position from the leading edge, for which in the case of a flat plate flow
at zero pressure gradient, takes the expression (see Schlichting [6])

δ∗ = 1.7208

√(
µ∞x

∗
0

ρ∞U∞

)
, (9)

where µ∞, ρ∞ and U∞ stand for the dynamic viscosity, density and velocity at the
boundary-layer edge. In the rest of the paper, the non-dimensional x-coordinate will
be referred to the x∗0 position, i.e.

x =
x∗ − x∗0
δ∗

, (10)

where x∗ is the dimensional distance from the leading edge. The Reynolds number based
on δ∗ is defined as

Reδ∗ =
ρ∞U∞δ

∗

µ∞
, (11)

and set to 610. The Mach number Ma∞ is 0.5 for all computations. The shape of the
humps and indentations is given by the expression

z = ±D exp

(
−
(
x− xc
L/2

)2m
)
, with m = 1, 2, 3, 4, . . . , (12)

where the parameter D indicates the height (+)/depth (-) of the hump/indentation, and
parameter L its width. The center of the surface irregularity is placed at xc. Since our
investigations are focused on the effect of the shape of the surface irregularity, parameters
D, L and xc will be constant for all simulations with 1.5, 50 and 100, respectively. The
geometrical parameter m will be varied from 1 to 4. In the case of an indentation, a
sketch showing the wall shape is depicted in Figure 2 for several values of m (including
the rectangular case, which can be considered the limiting case when m→∞).
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Figure 2: Sketch of the wall shape for several values of the geometrical parameter m in the case of an
indentation. The rectangular case can be considered the limiting case when m→∞.
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Figure 3: Skin-friction coefficient cf (left) and boundary-layer displacement thickness δ1 and momentum
thickness δ2 (right). In the case of indentations and humps, the examples plotted are for m = 3. Negative
values below the dashed line cf = 0 indicate the position of the recirculation bubbles.

In order to guarantee the grid independence of the basic flow results, two set of grids
were considered for all possible humps/indentations. In the second set of grids, both the
domain size was extended and the grid resolution in the vicinity of the surface irregularity
was increased (compared to the first set of grids). For both sets, inflow was imposed at
x = -584, i.e. upstream of the leading edge. In the first sets, the outflow was set at x =
400 and the upper boundary was imposed at z = 400. For the second set, these boundaries
were extended up to x = 500 and z = 500 for outflow and upper edge, respectively. In
the subdomain (x, z) ∈ [0, 200] ∪ [0, 6], where the surface irregularity is placed, the first
set of grids used 120 points in x-direction and 100 points in normal direction. In the
second set of grids, these numbers were increased up to 150 points in x-direction, and 130
points in normal direction. For comparison, the distribution of skin-friction coefficient
cf , boundary-layer displacement thickness δ1 and boundary-layer momentum thickness
δ2 were evaluated for each set of grids. Definition of cf , δ1 and δ2 can be found, e.g.
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in Schlichting [6]. For all cases results from the two sets of grids are almost identical.
This indicates that even the first set of grids is fine enough and does not show any grid
influence anymore. As an example, Figure 3 shows the comparison for the results using
the two sets of grids in the case of m = 3 (both hump and indentation), and also the
case of the flat plate computed with TAU compared with the corresponding flat plate
similarity solution. Finally, grids from the first set were used for stability analysis.

Figures 4 and 5 reproduce the contours of the streamwise velocity component of the
steady laminar two-dimensional flow on a flat plate in the presence of a hump (figure 4)
or an indentation (figure 5) for all cases considered in the present paper. The velocity ū
is made nondimensional with U∞. It is clearly visible that the length and height of the
recirculation bubbles increase when the humps/indentations tend to a rectangular shape
(i.e. increasing the value of m). The stability analysis performed in the following section
will describe the influence of the parameter m on the development of Tollmien-Schlichting
(TS) waves along the plate.

3.2 Stability analysis

The stability analysis will be restricted to the spatial development of two-dimensional
TS waves. The non-dimensional frequency F is defined as

F = 2πf
µ∞

ρ∞U2
∞
× 106 (13)

where f is the physical frequency of the disturbances. In the case of a flat plate without
any surface irregularity, the stability analysis has been done using PSE, and it reveals
that TS waves of non-dimensional frequencies in the range F ∈ [108.6, 217.2] produce
the highest n-factor curves in the domain x ∈ [0, 350]. When a surface irregularity is
present (hump or indentation), the multi-zonal approach is applied (see section 2.2). This
approach has been already validated against DNS computations for the stability analysis
of 2D TS waves over a flat plate in the presence of a smooth hump (see the work of Franco
& Hein [2]). In the multi-zonal framework, computations using PSE have been done up
to the section x = 50. In this region x ∈ [0, 50], the presence of the indentation may alter
the local pressure distribution with respect to the flat plate case, but due to the small
curvature of the hump/indentation and the absence of a recirculation bubble it can be
assumed that the PSE approach is valid. In the region x ∈ [50, 185] the rapid change of
the wall geometry and the presence of the recirculation bubble provoke that the changes
of any basic flow quantity q̄ in x-direction are presumably not small, and therefore the
assumptions made in PSE are questionable. Here, the AHLNS methodology is applied.
Finally, at some distance of the surface irregularity, in the domain x ∈ [185, 350], the
flow field tends to recover the flat plate solution, and again the PSE approach can be
used. To illustrate this procedure, Figure 6 shows the computed n-factor curves for
several frequencies1 in the case of a hump and an indentation (both for m = 4). In these
curves, the dashed lines indicate PSE computations while solid lines represent AHLNS
simulations.

1For simplicity in the figures, only few frequencies of the complete stability analysis are depicted.
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Figure 4: Contours of horizontal velocity component ū and streamlines for a flat plate in the presence
of a hump (m = 1,2,3,4). Velocity contours are made nondimensional with U∞. Axes not to scale.

Figure 5: Contours of horizontal velocity component ū and streamlines for a flat plate in the presence
of an indentation (m = 1,2,3,4). Velocity contours are made nondimensional with U∞. Axes not to scale.

3.2.1 Grid refinements

In order to assure that AHLNS results are grid-independent, 5 grids were tested,
with an increasing grid resolution from 111x60 to 191x140 points in the AHLNS do-
main x ∈ [50, 185], which is splitted into two subdomains. In the region directly around
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Figure 6: n-factor curves for certain frequencies in the case of a hump (left) and an indentation (right)
(both for m = 4). Based on multi-zonal approach, solid lines represent AHLNS computations, while
dashed lines correspond to PSE computations.
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Figure 7: Grid-convergence study for several grid points (nx, nz). The evolution of a TS wave of
frequency F = 162.9 along a hump (left) and an indentation (right) is considered. In both cases m = 4.

the hump/indentation x ∈ [50, 150] grids are equally spaced in x-direction. However, in
the domain x ∈ [150, 185] the grid spacing in x-direction is progressively increased in
streamwise direction in order to match with subsequent PSE grid-size requirements (see
section 1). In z-direction, all grids are gradually stretched with increasing distance to the
wall. In the grid convergence study, solely the number of points (nx, nz) was changed.
The study was done for the case of m = 4, and the evolution of a TS wave of frequency
F = 162.9 was analyzed. Figure 7 shows that grid convergence was achieved by using a
grid with (nx, nz) = (171, 120) points in both cases (hump and indentation).

3.2.2 N-factor envelope curves

As it was explained in section 2.3, the N -factor curve is defined as the envelope of
the n-factor curves. In the domain x ∈ [0, 350], TS waves of frequencies in the range
F ∈ [108.6, 217.2] produce the highest n-factor curves for humps and indentations. This
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Figure 8: N-factor curve (envelope) in the case of humps (left) and indentations (right) for various
values of the geometrical parameter m. Based on multi-zonal approach, solid lines represent AHLNS
computations, while dashed lines correspond to PSE computations.

range of frequencies is identical to the case of the flat plate. Therefore, the presence of
a hump/indentation simply increases the amplification of the TS waves, but it does not
introduce any noticeable shift in the frequency range of the TS waves that contribute to the
N-factor envelope in the considered domain. Figure 8 (left) indicates that the presence of a
hump introduces a local adverse pressure gradient upstream of the hump that destabilizes
the TS waves. Above the hump, there is a local favorable pressure gradient that stabilizes
the TS waves around the center of the hump (x = xc). Downstream of the hump, when
the TS waves reach the recirculation bubble, there is a rapid increase in the amplitude
of the disturbances. Finally, at a certain distance from the hump (x > 250), the growth
rate of the TS waves recovers the flat plate solution.

In the case of an indentation (Figure 8 - right), the local acceleration of the flow before
reaching the recirculation bubble (x ≈ 65) explains the small decrease in the N -factor
curves. This effect is followed by a rapid increase in N -factor due to the presence of the
bubble, similar to the effect already seen in the case of the hump. The appearance of a
peak in the curves at x ≈ 120 could be due to a local deceleration of the basic flow. This
peak occurs more pronounced when the geometrical parameter m is increased. Perraud
and Séraudie noticed a similar N-factor peak also in the case of rectangular forward-facing
steps (see [7]), and concluded that this peak could cause an earlier transition in certain
cases. Finally, at some distance from the indentation (x > 200), the growth rate of the TS
waves recovers the flat plate solution. Overall, the presence of a hump/indentation on a
flat plate increases significatively the amplitude of the TS waves. In the cases considered
in this paper, where the height/depth D and width L of the surface irregularity are fixed,
the rise in N -factor depends on the shape of the irregularity itself through the geometrical
parameter m. Therefore, it seems reasonable to define a ∆N function that relates the
increment of the N -factor envelopes with the geometrical parameter m. The ∆N -factor
is defined as

∆N (x,m) = N (x,m)−Nsmooth (x) , (14)

where N (x,m) represents the value of the N -factor curve for a given value of m at certain
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Figure 9: ∆N -factor definition for an indentation with m = 3 (left) and ∆N -factor as function of the
geometrical parameter m (right).

x location, and Nsmooth (x) is the value of the N -factor envelope computed for the flat
plate case. Due to the localized effect of the surface irregularity, the growth rate of the TS
waves recovers the flat plate solution and the value of ∆N does no longer depend on the
x-location, as it is shown in Figure 9 (left). Consequently, at some distance downstream of
the surface irregularity, it is reasonable to assume ∆N (x,m) ≈ ∆N (m). If this procedure
is repeated for the rest of humps/indentations, it is possible to relate the value of ∆N with
m, as it is shown in Figure 9 (right). This figure suggests that the value of ∆N (m) tends
to converge to a constant value providing that the value of m is sufficiently increased (for
both humps and indentations). This indicates that, for stability analysis purposes, the
effect of a particular rectangular hump/indentation could be qualitatively estimated from
the effect caused by an equivalent smooth hump/indentation of the same height/depth
and width as long as the geometrical parameter m is sufficiently large.

4 CONCLUSIONS

The stability analysis of two-dimensional Tollmien-Schlichting waves over a flat plate
in the presence of smooth humps/indentations has been described in this paper. The
height/depth and width were fixed, and the shape of the surface irregularity was system-
atically changed through a geometrical parameter m. It was shown that the presence
of humps/indentations leads to a significant rise of the amplitude of the TS waves when
the shape of the hump/indentation tends to be rectangular, i.e. increasing the value of
m. Moreover, there was no noticeable shift in the frequency range of the TS waves that
contribute to the N-factor envelope compared with the flat plate case.

It was shown that, at some distance downstream of the hump/indentation, the ∆N -
factor, defined as the difference in N -factor between the surface with hump/indentation
with respect to the flat plate case, was uniquely a function of the shape of the irregularity,
i.e. m. The simulations presented in this paper suggest that, above certain values of m
the corresponding ∆N -factor tends to reach a constant value. This would indicate that,
in order to perform a stability analysis of a rectangular hump/indentation, a qualitative
estimation could be provided by an equivalent smooth hump/indentation of identical
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height/depth and width, as long as the geometrical parameter m is sufficiently large.
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